wav2vec2-base-cv-10000
This model is a fine-tuned version of jiobiala24/wav2vec2-base-cv on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 1.3393
- Wer: 0.3684
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4243 | 1.6 | 1000 | 0.7742 | 0.4210 |
0.3636 | 3.2 | 2000 | 0.8621 | 0.4229 |
0.2638 | 4.8 | 3000 | 0.9328 | 0.4094 |
0.2273 | 6.4 | 4000 | 0.9556 | 0.4087 |
0.187 | 8.0 | 5000 | 0.9093 | 0.4019 |
0.1593 | 9.6 | 6000 | 0.9842 | 0.4029 |
0.1362 | 11.2 | 7000 | 1.0651 | 0.4077 |
0.1125 | 12.8 | 8000 | 1.0550 | 0.3959 |
0.103 | 14.4 | 9000 | 1.1919 | 0.4002 |
0.0948 | 16.0 | 10000 | 1.1901 | 0.3983 |
0.0791 | 17.6 | 11000 | 1.1091 | 0.3860 |
0.0703 | 19.2 | 12000 | 1.2823 | 0.3904 |
0.0641 | 20.8 | 13000 | 1.2625 | 0.3817 |
0.057 | 22.4 | 14000 | 1.2821 | 0.3776 |
0.0546 | 24.0 | 15000 | 1.2975 | 0.3770 |
0.0457 | 25.6 | 16000 | 1.2998 | 0.3714 |
0.0433 | 27.2 | 17000 | 1.3574 | 0.3721 |
0.0423 | 28.8 | 18000 | 1.3393 | 0.3684 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.