wav2vec2-base-cv-10000

This model is a fine-tuned version of jiobiala24/wav2vec2-base-cv on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3393
  • Wer: 0.3684

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4243 1.6 1000 0.7742 0.4210
0.3636 3.2 2000 0.8621 0.4229
0.2638 4.8 3000 0.9328 0.4094
0.2273 6.4 4000 0.9556 0.4087
0.187 8.0 5000 0.9093 0.4019
0.1593 9.6 6000 0.9842 0.4029
0.1362 11.2 7000 1.0651 0.4077
0.1125 12.8 8000 1.0550 0.3959
0.103 14.4 9000 1.1919 0.4002
0.0948 16.0 10000 1.1901 0.3983
0.0791 17.6 11000 1.1091 0.3860
0.0703 19.2 12000 1.2823 0.3904
0.0641 20.8 13000 1.2625 0.3817
0.057 22.4 14000 1.2821 0.3776
0.0546 24.0 15000 1.2975 0.3770
0.0457 25.6 16000 1.2998 0.3714
0.0433 27.2 17000 1.3574 0.3721
0.0423 28.8 18000 1.3393 0.3684

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu111
  • Datasets 1.13.3
  • Tokenizers 0.10.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train jiobiala24/wav2vec2-base-cv-10000