Jina AI: Your Search Foundation, Supercharged!

The embedding set trained by Jina AI.

Jina CLIP: your CLIP model is also your text retriever!

Intended Usage & Model Info

jina-clip-v1 is a state-of-the-art English multimodal (text-image) embedding model.

Traditional text embedding models, such as jina-embeddings-v2-base-en, excel in text-to-text retrieval but incapable of cross-modal tasks. Models like openai/clip-vit-base-patch32 effectively align image and text embeddings but are not optimized for text-to-text retrieval due to their training methodologies and context limitations.

jina-clip-v1 bridges this gap by offering robust performance in both domains. Its text component matches the retrieval efficiency of jina-embeddings-v2-base-en, while its overall architecture sets a new benchmark for cross-modal retrieval. This dual capability makes it an excellent tool for multimodal retrieval-augmented generation (MuRAG) applications, enabling seamless text-to-text and text-to-image searches within a single model.

Data & Parameters

Check out our paper

Usage

  1. The easiest way to starting using jina-clip-v1-en is to use Jina AI's Embeddings API.
  2. Alternatively, you can use Jina CLIP directly via transformers/sentence-transformers package.
!pip install transformers einops timm pillow
from transformers import AutoModel

# Initialize the model
model = AutoModel.from_pretrained('jinaai/jina-clip-v1', trust_remote_code=True)

# New meaningful sentences
sentences = ['A blue cat', 'A red cat']

# Public image URLs
image_urls = [
    'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg',
    'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
]

# Encode text and images
text_embeddings = model.encode_text(sentences)
image_embeddings = model.encode_image(image_urls)  # also accepts PIL.image, local filenames, dataURI

# Compute similarities
print(text_embeddings[0] @ text_embeddings[1].T) # text embedding similarity
print(text_embeddings[0] @ image_embeddings[0].T) # text-image cross-modal similarity
print(text_embeddings[0] @ image_embeddings[1].T) # text-image cross-modal similarity
print(text_embeddings[1] @ image_embeddings[0].T) # text-image cross-modal similarity
print(text_embeddings[1] @ image_embeddings[1].T)# text-image cross-modal similarity

or sentence-transformers:

# !pip install -U sentence-transformers 
from sentence_transformers import SentenceTransformer

# Initialize the model
model = SentenceTransformer('jinaai/jina-clip-v1', trust_remote_code=True)

# New meaningful sentences
sentences = ['A blue cat', 'A red cat']

# Public image URLs
image_urls = [
    'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg',
    'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
]

text_embeddings = model.encode(sentences)
image_embeddings = model.encode(image_urls)
  1. JavaScript developers can use Jina CLIP via the Transformers.js library. Note that to use this model, you need to install Transformers.js v3 from source using npm install xenova/transformers.js#v3.
import { AutoTokenizer, CLIPTextModelWithProjection, AutoProcessor, CLIPVisionModelWithProjection, RawImage, cos_sim } from '@xenova/transformers';

// Load tokenizer and text model
const tokenizer = await AutoTokenizer.from_pretrained('jinaai/jina-clip-v1');
const text_model = await CLIPTextModelWithProjection.from_pretrained('jinaai/jina-clip-v1');

// Load processor and vision model
const processor = await AutoProcessor.from_pretrained('Xenova/clip-vit-base-patch32');
const vision_model = await CLIPVisionModelWithProjection.from_pretrained('jinaai/jina-clip-v1');

// Run tokenization
const texts = ['A blue cat', 'A red cat'];
const text_inputs = tokenizer(texts, { padding: true, truncation: true });

// Compute text embeddings
const { text_embeds } = await text_model(text_inputs);

// Read images and run processor
const urls = [
    'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg',
    'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
];
const image = await Promise.all(urls.map(url => RawImage.read(url)));
const image_inputs = await processor(image);

// Compute vision embeddings
const { image_embeds } = await vision_model(image_inputs);

//  Compute similarities
console.log(cos_sim(text_embeds[0].data, text_embeds[1].data)) // text embedding similarity
console.log(cos_sim(text_embeds[0].data, image_embeds[0].data)) // text-image cross-modal similarity
console.log(cos_sim(text_embeds[0].data, image_embeds[1].data)) // text-image cross-modal similarity
console.log(cos_sim(text_embeds[1].data, image_embeds[0].data)) // text-image cross-modal similarity
console.log(cos_sim(text_embeds[1].data, image_embeds[1].data)) // text-image cross-modal similarity

Performance

Text-Image Retrieval

Name Flickr Image Retr. R@1 Flickr Image Retr. R@5 Flickr Text Retr. R@1 Flickr Text Retr. R@5
ViT-B-32 0.597 0.8398 0.781 0.938
ViT-B-16 0.6216 0.8572 0.822 0.966
jina-clip 0.6748 0.8902 0.811 0.965
Name MSCOCO Image Retr. R@1 MSCOCO Image Retr. R@5 MSCOCO Text Retr. R@1 MSCOCO Text Retr. R@5
ViT-B-32 0.342 0.6001 0.5234 0.7634
ViT-B-16 0.3309 0.5842 0.5242 0.767
jina-clip 0.4111 0.6644 0.5544 0.7904

Text-Text Retrieval

Name STS12 STS15 STS17 STS13 STS14 STS16 STS22 STSBenchmark SummEval
jina-embeddings-v2 0.7427 0.8755 0.8888 0.833 0.7917 0.836 0.6346 0.8404 0.3056
jina-clip 0.7352 0.8746 0.8976 0.8323 0.7868 0.8377 0.6583 0.8493 0.3048
Name ArguAna FiQA2018 NFCorpus Quora SCIDOCS SciFact TRECCOVID
jina-embeddings-v2 0.4418 0.4158 0.3245 0.882 0.1986 0.6668 0.6591
jina-clip 0.4933 0.3827 0.3352 0.8789 0.2024 0.6734 0.7161

Contact

Join our Discord community and chat with other community members about ideas.

Citation

If you find jina-clip-v1 useful in your research, please cite the following paper:

@misc{2405.20204,
    Author = {Andreas Koukounas and Georgios Mastrapas and Michael GΓΌnther and Bo Wang and Scott Martens and Isabelle Mohr and Saba Sturua and Mohammad Kalim Akram and Joan Fontanals MartΓ­nez and Saahil Ognawala and Susana Guzman and Maximilian Werk and Nan Wang and Han Xiao},
    Title = {Jina CLIP: Your CLIP Model Is Also Your Text Retriever},
    Year = {2024},
    Eprint = {arXiv:2405.20204},
}

FAQ

I encounter this problem, what should I do?

ValueError: The model class you are passing has a `config_class` attribute that is not consistent with the config class you passed (model has <class 'transformers_modules.jinaai.jina-clip-implementation.7f069e2d54d609ef1ad2eb578c7bf07b5a51de41.configuration_clip.JinaCLIPConfig'> and you passed <class 'transformers_modules.jinaai.jina-clip-implementation.7f069e2d54d609ef1ad2eb578c7bf07b5a51de41.configuration_cli.JinaCLIPConfig'>. Fix one of those so they match!

There was a bug in Transformers library between 4.40.x to 4.41.1. You can update transformers to >4.41.2 or <=4.40.0

Given one query, how can I merge its text-text and text-image cosine similarity?

Our emperical study shows that text-text cosine similarity is normally larger than text-image cosine similarity! If you want to merge two scores, we recommended 2 ways:

  1. weighted average of text-text sim and text-image sim:
combined_scores = sim(text, text) + lambda * sim(text, image)  # optimal lambda depends on your dataset, but in general lambda=2 can be a good choice.
  1. apply z-score normalization before merging scores:
# pseudo code
query_document_mean = np.mean(cos_sim_text_texts)
query_document_std = np.std(cos_sim_text_texts)
text_image_mean = np.mean(cos_sim_text_images)
text_image_std = np.std(cos_sim_text_images)

query_document_sim_normalized = (cos_sim_query_documents - query_document_mean) / query_document_std
text_image_sim_normalized = (cos_sim_text_images - text_image_mean) / text_image_std
Downloads last month
48,982
Safetensors
Model size
223M params
Tensor type
F32
Β·
Inference Examples
Inference API (serverless) has been turned off for this model.

Spaces using jinaai/jina-clip-v1 6

Collection including jinaai/jina-clip-v1