|
--- |
|
pipeline_tag: text-generation |
|
language: |
|
- multilingual |
|
inference: false |
|
license: cc-by-nc-4.0 |
|
library_name: transformers |
|
--- |
|
|
|
<br><br> |
|
|
|
<p align="center"> |
|
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px"> |
|
</p> |
|
|
|
<p align="center"> |
|
<b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b> |
|
</p> |
|
|
|
[Blog](https://jina.ai/news/readerlm-v2-frontier-small-language-model-for-html-to-markdown-and-json) | [API](https://jina.ai/reader) | [Colab](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing) | [AWS](https://aws.amazon.com/marketplace/pp/prodview-jwfct4j4rvxk2?sr=0-21&ref_=beagle&applicationId=AWSMPContessa) | [Azure](https://azuremarketplace.microsoft.com/en-us/marketplace/apps/jinaai.reader-lm-v2-vm)| [Arxiv (soon!)] |
|
|
|
# ReaderLM-v2 |
|
|
|
`ReaderLM-v2` is a 1.5B parameter language model that converts raw HTML into beautifully formatted markdown or JSON with superior accuracy and improved longer context handling. Supporting multiple languages (29 in total), `ReaderLM-v2` is specialized for tasks involving HTML parsing, transformation, and text extraction. |
|
|
|
## What's New in `ReaderLM-v2` |
|
|
|
`ReaderLM-v2` represents a significant leap forward from its predecessor, with several key improvements: |
|
|
|
- **Better Markdown Generation**: Thanks to its new training paradigm and higher-quality training data, the model excels at generating complex elements like code fences, nested lists, tables, and LaTeX equations. |
|
- **JSON Output**: Introduces direct HTML-to-JSON generation using predefined schemas, eliminating the need for intermediate markdown conversion. |
|
- **Longer Context Handling**: Handles up to 512K tokens combined input and output length, with improved performance on long-form content. |
|
- **Multilingual Support**: Comprehensive support across 29 languages for broader applications. |
|
- **Enhanced Stability**: Greatly alleviates degeneration issues after generating long sequences through contrastive loss during training. |
|
|
|
## Model Overview |
|
|
|
- **Model Type**: Autoregressive, decoder-only transformer |
|
- **Parameter Count**: 1.54B |
|
- **Context Window**: Up to 512K tokens (combined input and output) |
|
- **Hidden Size**: 1536 |
|
- **Number of Layers**: 28 |
|
- **Query Heads**: 12 |
|
- **KV Heads**: 2 |
|
- **Head Size**: 128 |
|
- **Intermediate Size**: 8960 |
|
- **Supported Languages**: English, Chinese, Japanese, Korean, French, Spanish, Portuguese, German, Italian, Russian, Vietnamese, Thai, Arabic, and more (29 total) |
|
|
|
--- |
|
|
|
# Usage |
|
|
|
Below, you will find instructions and examples for using `ReaderLM-v2` locally using the Hugging Face Transformers library. |
|
For a more hands-on experience in a hosted environment, see the [Google Colab Notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing). |
|
|
|
## Via Reader API |
|
|
|
`ReaderLM-v2` is now fully integrated with [Reader API](https://jina.ai/reader/). To use it, simply specify `x-engine: readerlm-v2` in your request headers and enable response streaming with `-H 'Accept: text/event-stream'`: |
|
|
|
```bash |
|
curl https://r.jina.ai/https://news.ycombinator.com/ -H 'x-engine: readerlm-v2' -H 'Accept: text/event-stream' |
|
``` |
|
|
|
You can try it without an API key at a lower rate limit. For higher rate limits, you can purchase an API key. Please note that ReaderLM-v2 requests consume 3x the normal token count from your API key allocation. This is currently an experimental feature, and we're working with the GCP team to improve GPU efficiency. |
|
|
|
## On Google Colab |
|
|
|
You can try `ReaderLM-v2` via our [Colab notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing), which demonstrates HTML-to-markdown conversion, JSON extraction, and instruction-following using the HackerNews frontpage as an example. The notebook is optimized for Colab's free T4 GPU tier and requires `vllm` and `triton` for acceleration and running. |
|
|
|
Note that the free T4 GPU has limitations—it doesn't support bfloat16 or flash attention 2, leading to higher memory usage and slower processing of longer inputs. Nevertheless, ReaderLM-v2 successfully processes large documents under these constraints, achieving processing speeds of 67 tokens/s input and 36 tokens/s output. For production use, we recommend an RTX 3090/4090 for optimal performance. |
|
|
|
## Local Usage |
|
|
|
To use `ReaderLM-v2` locally: |
|
|
|
1. Install the necessary dependencies: |
|
|
|
```bash |
|
pip install transformers |
|
``` |
|
|
|
2. Load and run the model: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" # or "cpu" |
|
tokenizer = AutoTokenizer.from_pretrained("jinaai/ReaderLM-v2") |
|
model = AutoModelForCausalLM.from_pretrained("jinaai/ReaderLM-v2").to(device) |
|
``` |
|
|
|
3. (Optional) Pre-clean your HTML to remove scripts, styles, comments, to reduce the noise and length of the input: |
|
|
|
```python |
|
import re |
|
|
|
# Patterns |
|
SCRIPT_PATTERN = r"<[ ]*script.*?\/[ ]*script[ ]*>" |
|
STYLE_PATTERN = r"<[ ]*style.*?\/[ ]*style[ ]*>" |
|
META_PATTERN = r"<[ ]*meta.*?>" |
|
COMMENT_PATTERN = r"<[ ]*!--.*?--[ ]*>" |
|
LINK_PATTERN = r"<[ ]*link.*?>" |
|
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>' |
|
SVG_PATTERN = r"(<svg[^>]*>)(.*?)(<\/svg>)" |
|
|
|
|
|
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str: |
|
return re.sub( |
|
SVG_PATTERN, |
|
lambda match: f"{match.group(1)}{new_content}{match.group(3)}", |
|
html, |
|
flags=re.DOTALL, |
|
) |
|
|
|
|
|
def replace_base64_images(html: str, new_image_src: str = "#") -> str: |
|
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html) |
|
|
|
|
|
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False): |
|
html = re.sub( |
|
SCRIPT_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL |
|
) |
|
html = re.sub( |
|
STYLE_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL |
|
) |
|
html = re.sub( |
|
META_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL |
|
) |
|
html = re.sub( |
|
COMMENT_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL |
|
) |
|
html = re.sub( |
|
LINK_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL |
|
) |
|
|
|
if clean_svg: |
|
html = replace_svg(html) |
|
if clean_base64: |
|
html = replace_base64_images(html) |
|
return html |
|
``` |
|
|
|
4. Create a prompt for the model: |
|
|
|
```python |
|
def create_prompt( |
|
text: str, tokenizer=None, instruction: str = None, schema: str = None |
|
) -> str: |
|
""" |
|
Create a prompt for the model with optional instruction and JSON schema. |
|
""" |
|
if not instruction: |
|
instruction = "Extract the main content from the given HTML and convert it to Markdown format." |
|
if schema: |
|
instruction = "Extract the specified information from a list of news threads and present it in a structured JSON format." |
|
prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json\n{schema}\n```" |
|
else: |
|
prompt = f"{instruction}\n```html\n{text}\n```" |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": prompt, |
|
} |
|
] |
|
|
|
return tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
``` |
|
|
|
### HTML to Markdown Example |
|
|
|
```python |
|
html = "<html><body><h1>Hello, world!</h1></body></html>" |
|
|
|
html = clean_html(html) |
|
|
|
input_prompt = create_prompt(html, tokenizer=tokenizer) |
|
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device) |
|
outputs = model.generate( |
|
inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08 |
|
) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### HTML to JSON Example |
|
|
|
```python |
|
schema = """ |
|
{ |
|
"type": "object", |
|
"properties": { |
|
"title": { |
|
"type": "string" |
|
}, |
|
"author": { |
|
"type": "string" |
|
}, |
|
"date": { |
|
"type": "string" |
|
}, |
|
"content": { |
|
"type": "string" |
|
} |
|
}, |
|
"required": ["title", "author", "date", "content"] |
|
} |
|
""" |
|
|
|
html = clean_html(html) |
|
input_prompt = create_prompt(html, schema=schema) |
|
|
|
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device) |
|
outputs = model.generate( |
|
inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08 |
|
) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
## Model Performance |
|
|
|
ReaderLM-v2 has been extensively evaluated on various tasks: |
|
|
|
### Quantitative Evaluation |
|
|
|
For HTML-to-Markdown tasks, the model outperforms much larger models like Qwen2.5-32B-Instruct and Gemini2-flash-expr, achieving: |
|
- ROUGE-L: 0.84 |
|
- Levenshtein Distance: 0.22 |
|
- Jaro-Winkler Similarity: 0.82 |
|
|
|
For HTML-to-JSON tasks, it shows competitive performance with: |
|
- F1 Score: 0.81 |
|
- Precision: 0.82 |
|
- Recall: 0.81 |
|
- Pass-Rate: 0.98 |
|
|
|
### Qualitative Evaluation |
|
|
|
The model excels in three key dimensions: |
|
- Content Integrity: 39/50 |
|
- Structural Accuracy: 35/50 |
|
- Format Compliance: 36/50 |
|
|
|
These scores demonstrate strong performance in preserving semantic information, maintaining structural accuracy, and adhering to markdown syntax standards. |
|
|
|
## Training Details |
|
|
|
ReaderLM-v2 is built on Qwen2.5-1.5B-Instruction and trained using a sophisticated pipeline: |
|
|
|
1. Data Preparation: Created html-markdown-1m dataset with 1 million HTML documents |
|
2. Synthetic Data Generation: Three-step pipeline using Qwen2.5-32B-Instruction |
|
- Drafting: Initial markdown and JSON generation |
|
- Refinement: Content cleanup and structure alignment |
|
- Critique: Quality evaluation and filtering |
|
|
|
3. Training Process: |
|
- Long-context pretraining |
|
- Supervised fine-tuning |
|
- Direct preference optimization |
|
- Self-play reinforcement tuning |