zephyr-7b / README.md
jikaixuan's picture
End of training
c11af18 verified
|
raw
history blame
3.04 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: zephyr-7b
    results: []

zephyr-7b

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-qlora on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4399
  • Rewards/chosen: -3.1655
  • Rewards/rejected: -5.0200
  • Rewards/accuracies: 0.3398
  • Rewards/margins: 1.8544
  • Logps/rejected: -579.1896
  • Logps/chosen: -380.4651
  • Logits/rejected: 4.5948
  • Logits/chosen: 4.4604
  • Use Label: 6575.7188
  • Pred Label: 2212.2812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Use Label Pred Label
0.6535 0.21 100 0.6432 -0.2049 -0.3593 0.3516 0.1544 -113.1259 -84.4063 -2.0537 -2.0656 1713.5 18.5
0.507 0.42 200 0.5048 -1.6723 -2.3466 0.3594 0.6743 -311.8494 -231.1388 2.1626 2.0915 3214.5625 373.4375
0.4799 0.63 300 0.4885 -1.7906 -2.6624 0.3359 0.8718 -343.4285 -242.9698 3.2225 3.1511 4474.75 969.25
0.4443 0.84 400 0.4405 -3.0809 -4.8915 0.3438 1.8106 -566.3419 -371.9976 4.5207 4.3874 5649.7188 1650.2812

Framework versions

  • PEFT 0.7.1
  • Transformers 4.38.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2