zephyr-7b / README.md
jikaixuan's picture
Model save
3ec4a5c verified
|
raw
history blame
2.91 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - trl
  - dpo
  - generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: zephyr-7b
    results: []

zephyr-7b

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5769
  • Rewards/chosen: -0.6646
  • Rewards/rejected: -1.1353
  • Rewards/accuracies: 0.3711
  • Rewards/margins: 0.4707
  • Logps/rejected: -190.7267
  • Logps/chosen: -130.3719
  • Logits/rejected: 1.8500
  • Logits/chosen: 1.7576
  • Use Label: 6517.1875
  • Pred Label: 782.8125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Use Label Pred Label
0.6531 0.21 100 0.6528 -0.1643 -0.2945 0.3633 0.1303 -106.6470 -80.3385 -1.7198 -1.7354 1725.3125 6.6875
0.6041 0.42 200 0.5936 -0.7144 -1.1047 0.3516 0.3903 -187.6596 -135.3474 0.9784 0.8864 3420.5938 167.4062
0.5763 0.63 300 0.5773 -0.7930 -1.2317 0.3516 0.4387 -200.3615 -143.2137 1.7526 1.6599 4991.2812 452.7188
0.5836 0.84 400 0.5769 -0.6646 -1.1353 0.3711 0.4707 -190.7267 -130.3719 1.8500 1.7576 6517.1875 782.8125

Framework versions

  • PEFT 0.7.1
  • Transformers 4.38.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2