See axolotl config
axolotl version: 0.3.0
base_model: stabilityai/stablelm-3b-4e1t
base_model_config: stabilityai/stablelm-3b-4e1t
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: GPTNeoXTokenizerFast
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: theory_of_mind_airoboros_fixed.json
type: alpaca
dataset_prepared_path:
val_set_size: 0.005
output_dir: ./qlora-out-2
adapter: qlora
wandb_project: theoryofmind
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
sequence_len: 1024
sample_packing: false
pad_to_sequence_len: true
save_safetensors: false
lora_r: 128
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: false
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
lora_target_modules:
- q_proj
- v_proj
gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 5
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|endoftext|>"
eos_token: "<|im_end|>"
unk_token: "<|endoftext|>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
qlora-out-2
This model is a fine-tuned version of stabilityai/stablelm-3b-4e1t on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9864
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.928 | 0.05 | 1 | 1.7816 |
1.2231 | 1.0 | 22 | 1.1896 |
0.8273 | 2.0 | 44 | 1.0456 |
0.517 | 3.0 | 66 | 0.9905 |
1.0244 | 4.0 | 88 | 0.9915 |
0.6749 | 5.0 | 110 | 0.9864 |
Framework versions
- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 6