jeduardogruiz
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import spaces
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from gradio.themes.utils import sizes
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision import transforms
|
11 |
+
import tempfile
|
12 |
+
|
13 |
+
class Config:
|
14 |
+
ASSETS_DIR = os.path.join(os.path.dirname(__file__), 'assets')
|
15 |
+
CHECKPOINTS_DIR = os.path.join(ASSETS_DIR, "checkpoints")
|
16 |
+
CHECKPOINTS = {
|
17 |
+
"0.3b": "sapiens_0.3b_normal_render_people_epoch_66_torchscript.pt2",
|
18 |
+
"0.6b": "sapiens_0.6b_normal_render_people_epoch_200_torchscript.pt2",
|
19 |
+
"1b": "sapiens_1b_normal_render_people_epoch_115_torchscript.pt2",
|
20 |
+
"2b": "sapiens_2b_normal_render_people_epoch_70_torchscript.pt2",
|
21 |
+
}
|
22 |
+
SEG_CHECKPOINTS = {
|
23 |
+
"fg-bg-1b (recommended)": "sapiens_1b_seg_foreground_epoch_8_torchscript.pt2",
|
24 |
+
"no-bg-removal": None,
|
25 |
+
"part-seg-1b": "sapiens_1b_goliath_best_goliath_mIoU_7994_epoch_151_torchscript.pt2",
|
26 |
+
}
|
27 |
+
|
28 |
+
class ModelManager:
|
29 |
+
@staticmethod
|
30 |
+
def load_model(checkpoint_name: str):
|
31 |
+
if checkpoint_name is None:
|
32 |
+
return None
|
33 |
+
checkpoint_path = os.path.join(Config.CHECKPOINTS_DIR, checkpoint_name)
|
34 |
+
model = torch.jit.load(checkpoint_path)
|
35 |
+
model.eval()
|
36 |
+
model.to("cuda")
|
37 |
+
return model
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
@torch.inference_mode()
|
41 |
+
def run_model(model, input_tensor, height, width):
|
42 |
+
output = model(input_tensor)
|
43 |
+
return F.interpolate(output, size=(height, width), mode="bilinear", align_corners=False)
|
44 |
+
|
45 |
+
class ImageProcessor:
|
46 |
+
def __init__(self):
|
47 |
+
self.transform_fn = transforms.Compose([
|
48 |
+
transforms.Resize((1024, 768)),
|
49 |
+
transforms.ToTensor(),
|
50 |
+
transforms.Normalize(mean=[123.5/255, 116.5/255, 103.5/255], std=[58.5/255, 57.0/255, 57.5/255]),
|
51 |
+
])
|
52 |
+
|
53 |
+
@spaces.GPU
|
54 |
+
def process_image(self, image: Image.Image, normal_model_name: str, seg_model_name: str):
|
55 |
+
# Load models here instead of storing them as class attributes
|
56 |
+
normal_model = ModelManager.load_model(Config.CHECKPOINTS[normal_model_name])
|
57 |
+
input_tensor = self.transform_fn(image).unsqueeze(0).to("cuda")
|
58 |
+
|
59 |
+
# Run normal estimation
|
60 |
+
normal_output = ModelManager.run_model(normal_model, input_tensor, image.height, image.width)
|
61 |
+
normal_map = normal_output.squeeze().cpu().numpy().transpose(1, 2, 0)
|
62 |
+
|
63 |
+
# Create a copy of the normal map for visualization
|
64 |
+
normal_map_vis = normal_map.copy()
|
65 |
+
|
66 |
+
# Run segmentation
|
67 |
+
if seg_model_name != "no-bg-removal":
|
68 |
+
seg_model = ModelManager.load_model(Config.SEG_CHECKPOINTS[seg_model_name])
|
69 |
+
seg_output = ModelManager.run_model(seg_model, input_tensor, image.height, image.width)
|
70 |
+
seg_mask = (seg_output.argmax(dim=1) > 0).float().cpu().numpy()[0]
|
71 |
+
|
72 |
+
# Apply segmentation mask to normal maps
|
73 |
+
normal_map[seg_mask == 0] = np.nan # Set background to NaN for NPY file
|
74 |
+
normal_map_vis[seg_mask == 0] = -1 # Set background to -1 for visualization
|
75 |
+
|
76 |
+
# Normalize and visualize normal map
|
77 |
+
normal_map_vis = self.visualize_normal_map(normal_map_vis)
|
78 |
+
|
79 |
+
# Create downloadable .npy file
|
80 |
+
npy_path = tempfile.mktemp(suffix='.npy')
|
81 |
+
np.save(npy_path, normal_map)
|
82 |
+
|
83 |
+
return Image.fromarray(normal_map_vis), npy_path
|
84 |
+
|
85 |
+
@staticmethod
|
86 |
+
def visualize_normal_map(normal_map):
|
87 |
+
normal_map_norm = np.linalg.norm(normal_map, axis=-1, keepdims=True)
|
88 |
+
normal_map_normalized = normal_map / (normal_map_norm + 1e-5)
|
89 |
+
normal_map_vis = ((normal_map_normalized + 1) / 2 * 255).astype(np.uint8)
|
90 |
+
return normal_map_vis
|
91 |
+
|
92 |
+
class GradioInterface:
|
93 |
+
def __init__(self):
|
94 |
+
self.image_processor = ImageProcessor()
|
95 |
+
|
96 |
+
def create_interface(self):
|
97 |
+
app_styles = """
|
98 |
+
<style>
|
99 |
+
/* Global Styles */
|
100 |
+
body, #root {
|
101 |
+
font-family: Helvetica, Arial, sans-serif;
|
102 |
+
background-color: #1a1a1a;
|
103 |
+
color: #fafafa;
|
104 |
+
}
|
105 |
+
|
106 |
+
/* Header Styles */
|
107 |
+
.app-header {
|
108 |
+
background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
|
109 |
+
padding: 24px;
|
110 |
+
border-radius: 8px;
|
111 |
+
margin-bottom: 24px;
|
112 |
+
text-align: center;
|
113 |
+
}
|
114 |
+
|
115 |
+
.app-title {
|
116 |
+
font-size: 48px;
|
117 |
+
margin: 0;
|
118 |
+
color: #fafafa;
|
119 |
+
}
|
120 |
+
|
121 |
+
.app-subtitle {
|
122 |
+
font-size: 24px;
|
123 |
+
margin: 8px 0 16px;
|
124 |
+
color: #fafafa;
|
125 |
+
}
|
126 |
+
|
127 |
+
.app-description {
|
128 |
+
font-size: 16px;
|
129 |
+
line-height: 1.6;
|
130 |
+
opacity: 0.8;
|
131 |
+
margin-bottom: 24px;
|
132 |
+
}
|
133 |
+
|
134 |
+
/* Button Styles */
|
135 |
+
.publication-links {
|
136 |
+
display: flex;
|
137 |
+
justify-content: center;
|
138 |
+
flex-wrap: wrap;
|
139 |
+
gap: 8px;
|
140 |
+
margin-bottom: 16px;
|
141 |
+
}
|
142 |
+
|
143 |
+
.publication-link {
|
144 |
+
display: inline-flex;
|
145 |
+
align-items: center;
|
146 |
+
padding: 8px 16px;
|
147 |
+
background-color: #333;
|
148 |
+
color: #fff !important;
|
149 |
+
text-decoration: none !important;
|
150 |
+
border-radius: 20px;
|
151 |
+
font-size: 14px;
|
152 |
+
transition: background-color 0.3s;
|
153 |
+
}
|
154 |
+
|
155 |
+
.publication-link:hover {
|
156 |
+
background-color: #555;
|
157 |
+
}
|
158 |
+
|
159 |
+
.publication-link i {
|
160 |
+
margin-right: 8px;
|
161 |
+
}
|
162 |
+
|
163 |
+
/* Content Styles */
|
164 |
+
.content-container {
|
165 |
+
background-color: #2a2a2a;
|
166 |
+
border-radius: 8px;
|
167 |
+
padding: 24px;
|
168 |
+
margin-bottom: 24px;
|
169 |
+
}
|
170 |
+
|
171 |
+
/* Image Styles */
|
172 |
+
.image-preview img {
|
173 |
+
max-width: 100%;
|
174 |
+
max-height: 512px;
|
175 |
+
margin: 0 auto;
|
176 |
+
border-radius: 4px;
|
177 |
+
display: block;
|
178 |
+
}
|
179 |
+
|
180 |
+
/* Control Styles */
|
181 |
+
.control-panel {
|
182 |
+
background-color: #333;
|
183 |
+
padding: 16px;
|
184 |
+
border-radius: 8px;
|
185 |
+
margin-top: 16px;
|
186 |
+
}
|
187 |
+
|
188 |
+
/* Gradio Component Overrides */
|
189 |
+
.gr-button {
|
190 |
+
background-color: #4a4a4a;
|
191 |
+
color: #fff;
|
192 |
+
border: none;
|
193 |
+
border-radius: 4px;
|
194 |
+
padding: 8px 16px;
|
195 |
+
cursor: pointer;
|
196 |
+
transition: background-color 0.3s;
|
197 |
+
}
|
198 |
+
|
199 |
+
.gr-button:hover {
|
200 |
+
background-color: #5a5a5a;
|
201 |
+
}
|
202 |
+
|
203 |
+
.gr-input, .gr-dropdown {
|
204 |
+
background-color: #3a3a3a;
|
205 |
+
color: #fff;
|
206 |
+
border: 1px solid #4a4a4a;
|
207 |
+
border-radius: 4px;
|
208 |
+
padding: 8px;
|
209 |
+
}
|
210 |
+
|
211 |
+
.gr-form {
|
212 |
+
background-color: transparent;
|
213 |
+
}
|
214 |
+
|
215 |
+
.gr-panel {
|
216 |
+
border: none;
|
217 |
+
background-color: transparent;
|
218 |
+
}
|
219 |
+
|
220 |
+
/* Override any conflicting styles from Bulma */
|
221 |
+
.button.is-normal.is-rounded.is-dark {
|
222 |
+
color: #fff !important;
|
223 |
+
text-decoration: none !important;
|
224 |
+
}
|
225 |
+
</style>
|
226 |
+
"""
|
227 |
+
|
228 |
+
header_html = f"""
|
229 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">
|
230 |
+
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
|
231 |
+
{app_styles}
|
232 |
+
<div class="app-header">
|
233 |
+
<h1 class="app-title">Sapiens: Normal Estimation</h1>
|
234 |
+
<h2 class="app-subtitle">ECCV 2024 (Oral)</h2>
|
235 |
+
<p class="app-description">
|
236 |
+
Meta presents Sapiens, foundation models for human tasks pretrained on 300 million human images.
|
237 |
+
This demo showcases the finetuned normal estimation model. <br>
|
238 |
+
Checkout other normal estimation baselines to compare: <a href="https://huggingface.co/spaces/Stable-X/normal-estimation-arena" style="color: #3273dc;">normal-estimation-arena</a>
|
239 |
+
</p>
|
240 |
+
<div class="publication-links">
|
241 |
+
<a href="https://arxiv.org/abs/2408.12569" class="publication-link">
|
242 |
+
<i class="fas fa-file-pdf"></i>arXiv
|
243 |
+
</a>
|
244 |
+
<a href="https://github.com/facebookresearch/sapiens" class="publication-link">
|
245 |
+
<i class="fab fa-github"></i>Code
|
246 |
+
</a>
|
247 |
+
<a href="https://about.meta.com/realitylabs/codecavatars/sapiens/" class="publication-link">
|
248 |
+
<i class="fas fa-globe"></i>Meta
|
249 |
+
</a>
|
250 |
+
<a href="https://rawalkhirodkar.github.io/sapiens" class="publication-link">
|
251 |
+
<i class="fas fa-chart-bar"></i>Results
|
252 |
+
</a>
|
253 |
+
</div>
|
254 |
+
<div class="publication-links">
|
255 |
+
<a href="https://huggingface.co/spaces/facebook/sapiens_pose" class="publication-link">
|
256 |
+
<i class="fas fa-user"></i>Demo-Pose
|
257 |
+
</a>
|
258 |
+
<a href="https://huggingface.co/spaces/facebook/sapiens_seg" class="publication-link">
|
259 |
+
<i class="fas fa-puzzle-piece"></i>Demo-Seg
|
260 |
+
</a>
|
261 |
+
<a href="https://huggingface.co/spaces/facebook/sapiens_depth" class="publication-link">
|
262 |
+
<i class="fas fa-cube"></i>Demo-Depth
|
263 |
+
</a>
|
264 |
+
<a href="https://huggingface.co/spaces/facebook/sapiens_normal" class="publication-link">
|
265 |
+
<i class="fas fa-vector-square"></i>Demo-Normal
|
266 |
+
</a>
|
267 |
+
</div>
|
268 |
+
</div>
|
269 |
+
"""
|
270 |
+
|
271 |
+
def process_image(image, normal_model_name, seg_model_name):
|
272 |
+
result, npy_path = self.image_processor.process_image(image, normal_model_name, seg_model_name)
|
273 |
+
return result, npy_path
|
274 |
+
|
275 |
+
js_func = """
|
276 |
+
function refresh() {
|
277 |
+
const url = new URL(window.location);
|
278 |
+
if (url.searchParams.get('__theme') !== 'dark') {
|
279 |
+
url.searchParams.set('__theme', 'dark');
|
280 |
+
window.location.href = url.href;
|
281 |
+
}
|
282 |
+
}
|
283 |
+
"""
|
284 |
+
|
285 |
+
with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
|
286 |
+
gr.HTML(header_html)
|
287 |
+
with gr.Row(elem_classes="content-container"):
|
288 |
+
with gr.Column():
|
289 |
+
input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
|
290 |
+
with gr.Row(elem_classes="control-panel"):
|
291 |
+
normal_model_name = gr.Dropdown(
|
292 |
+
label="Normal Model Size",
|
293 |
+
choices=list(Config.CHECKPOINTS.keys()),
|
294 |
+
value="1b",
|
295 |
+
)
|
296 |
+
seg_model_name = gr.Dropdown(
|
297 |
+
label="Background Removal Model",
|
298 |
+
choices=list(Config.SEG_CHECKPOINTS.keys()),
|
299 |
+
value="fg-bg-1b (recommended)",
|
300 |
+
)
|
301 |
+
example_model = gr.Examples(
|
302 |
+
inputs=input_image,
|
303 |
+
examples_per_page=14,
|
304 |
+
examples=[
|
305 |
+
os.path.join(Config.ASSETS_DIR, "images", img)
|
306 |
+
for img in os.listdir(os.path.join(Config.ASSETS_DIR, "images"))
|
307 |
+
],
|
308 |
+
)
|
309 |
+
with gr.Column():
|
310 |
+
result_image = gr.Image(label="Normal Estimation Result", type="pil", elem_classes="image-preview")
|
311 |
+
npy_output = gr.File(label="Output (.npy). Note: Background normal is NaN.")
|
312 |
+
run_button = gr.Button("Run", elem_classes="gr-button")
|
313 |
+
|
314 |
+
run_button.click(
|
315 |
+
fn=process_image,
|
316 |
+
inputs=[input_image, normal_model_name, seg_model_name],
|
317 |
+
outputs=[result_image, npy_output],
|
318 |
+
)
|
319 |
+
|
320 |
+
return demo
|
321 |
+
|
322 |
+
def main():
|
323 |
+
# Configure CUDA if available
|
324 |
+
if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
|
325 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
326 |
+
torch.backends.cudnn.allow_tf32 = True
|
327 |
+
|
328 |
+
interface = GradioInterface()
|
329 |
+
demo = interface.create_interface()
|
330 |
+
demo.launch(share=False)
|
331 |
+
|
332 |
+
if __name__ == "__main__":
|
333 |
+
main()
|