jeduardogruiz commited on
Commit
3bb2155
·
verified ·
1 Parent(s): a4e236c

Create encodec/msstftd.py

Browse files
Files changed (1) hide show
  1. encodec/msstftd.py +147 -0
encodec/msstftd.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """MS-STFT discriminator, provided here for reference."""
8
+
9
+ import typing as tp
10
+
11
+ import torchaudio
12
+ import torch
13
+ from torch import nn
14
+ from einops import rearrange
15
+
16
+ from .modules import NormConv2d
17
+
18
+
19
+ FeatureMapType = tp.List[torch.Tensor]
20
+ LogitsType = torch.Tensor
21
+ DiscriminatorOutput = tp.Tuple[tp.List[LogitsType], tp.List[FeatureMapType]]
22
+
23
+
24
+ def get_2d_padding(kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1)):
25
+ return (((kernel_size[0] - 1) * dilation[0]) // 2, ((kernel_size[1] - 1) * dilation[1]) // 2)
26
+
27
+
28
+ class DiscriminatorSTFT(nn.Module):
29
+ """STFT sub-discriminator.
30
+ Args:
31
+ filters (int): Number of filters in convolutions
32
+ in_channels (int): Number of input channels. Default: 1
33
+ out_channels (int): Number of output channels. Default: 1
34
+ n_fft (int): Size of FFT for each scale. Default: 1024
35
+ hop_length (int): Length of hop between STFT windows for each scale. Default: 256
36
+ kernel_size (tuple of int): Inner Conv2d kernel sizes. Default: ``(3, 9)``
37
+ stride (tuple of int): Inner Conv2d strides. Default: ``(1, 2)``
38
+ dilations (list of int): Inner Conv2d dilation on the time dimension. Default: ``[1, 2, 4]``
39
+ win_length (int): Window size for each scale. Default: 1024
40
+ normalized (bool): Whether to normalize by magnitude after stft. Default: True
41
+ norm (str): Normalization method. Default: `'weight_norm'`
42
+ activation (str): Activation function. Default: `'LeakyReLU'`
43
+ activation_params (dict): Parameters to provide to the activation function.
44
+ growth (int): Growth factor for the filters. Default: 1
45
+ """
46
+ def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1,
47
+ n_fft: int = 1024, hop_length: int = 256, win_length: int = 1024, max_filters: int = 1024,
48
+ filters_scale: int = 1, kernel_size: tp.Tuple[int, int] = (3, 9), dilations: tp.List = [1, 2, 4],
49
+ stride: tp.Tuple[int, int] = (1, 2), normalized: bool = True, norm: str = 'weight_norm',
50
+ activation: str = 'LeakyReLU', activation_params: dict = {'negative_slope': 0.2}):
51
+ super().__init__()
52
+ assert len(kernel_size) == 2
53
+ assert len(stride) == 2
54
+ self.filters = filters
55
+ self.in_channels = in_channels
56
+ self.out_channels = out_channels
57
+ self.n_fft = n_fft
58
+ self.hop_length = hop_length
59
+ self.win_length = win_length
60
+ self.normalized = normalized
61
+ self.activation = getattr(torch.nn, activation)(**activation_params)
62
+ self.spec_transform = torchaudio.transforms.Spectrogram(
63
+ n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window_fn=torch.hann_window,
64
+ normalized=self.normalized, center=False, pad_mode=None, power=None)
65
+ spec_channels = 2 * self.in_channels
66
+ self.convs = nn.ModuleList()
67
+ self.convs.append(
68
+ NormConv2d(spec_channels, self.filters, kernel_size=kernel_size, padding=get_2d_padding(kernel_size))
69
+ )
70
+ in_chs = min(filters_scale * self.filters, max_filters)
71
+ for i, dilation in enumerate(dilations):
72
+ out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters)
73
+ self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride,
74
+ dilation=(dilation, 1), padding=get_2d_padding(kernel_size, (dilation, 1)),
75
+ norm=norm))
76
+ in_chs = out_chs
77
+ out_chs = min((filters_scale ** (len(dilations) + 1)) * self.filters, max_filters)
78
+ self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=(kernel_size[0], kernel_size[0]),
79
+ padding=get_2d_padding((kernel_size[0], kernel_size[0])),
80
+ norm=norm))
81
+ self.conv_post = NormConv2d(out_chs, self.out_channels,
82
+ kernel_size=(kernel_size[0], kernel_size[0]),
83
+ padding=get_2d_padding((kernel_size[0], kernel_size[0])),
84
+ norm=norm)
85
+
86
+ def forward(self, x: torch.Tensor):
87
+ fmap = []
88
+ z = self.spec_transform(x) # [B, 2, Freq, Frames, 2]
89
+ z = torch.cat([z.real, z.imag], dim=1)
90
+ z = rearrange(z, 'b c w t -> b c t w')
91
+ for i, layer in enumerate(self.convs):
92
+ z = layer(z)
93
+ z = self.activation(z)
94
+ fmap.append(z)
95
+ z = self.conv_post(z)
96
+ return z, fmap
97
+
98
+
99
+ class MultiScaleSTFTDiscriminator(nn.Module):
100
+ """Multi-Scale STFT (MS-STFT) discriminator.
101
+ Args:
102
+ filters (int): Number of filters in convolutions
103
+ in_channels (int): Number of input channels. Default: 1
104
+ out_channels (int): Number of output channels. Default: 1
105
+ n_ffts (Sequence[int]): Size of FFT for each scale
106
+ hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale
107
+ win_lengths (Sequence[int]): Window size for each scale
108
+ **kwargs: additional args for STFTDiscriminator
109
+ """
110
+ def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1,
111
+ n_ffts: tp.List[int] = [1024, 2048, 512], hop_lengths: tp.List[int] = [256, 512, 128],
112
+ win_lengths: tp.List[int] = [1024, 2048, 512], **kwargs):
113
+ super().__init__()
114
+ assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
115
+ self.discriminators = nn.ModuleList([
116
+ DiscriminatorSTFT(filters, in_channels=in_channels, out_channels=out_channels,
117
+ n_fft=n_ffts[i], win_length=win_lengths[i], hop_length=hop_lengths[i], **kwargs)
118
+ for i in range(len(n_ffts))
119
+ ])
120
+ self.num_discriminators = len(self.discriminators)
121
+
122
+ def forward(self, x: torch.Tensor) -> DiscriminatorOutput:
123
+ logits = []
124
+ fmaps = []
125
+ for disc in self.discriminators:
126
+ logit, fmap = disc(x)
127
+ logits.append(logit)
128
+ fmaps.append(fmap)
129
+ return logits, fmaps
130
+
131
+
132
+ def test():
133
+ disc = MultiScaleSTFTDiscriminator(filters=32)
134
+ y = torch.randn(1, 1, 24000)
135
+ y_hat = torch.randn(1, 1, 24000)
136
+
137
+ y_disc_r, fmap_r = disc(y)
138
+ y_disc_gen, fmap_gen = disc(y_hat)
139
+ assert len(y_disc_r) == len(y_disc_gen) == len(fmap_r) == len(fmap_gen) == disc.num_discriminators
140
+
141
+ assert all([len(fm) == 5 for fm in fmap_r + fmap_gen])
142
+ assert all([list(f.shape)[:2] == [1, 32] for fm in fmap_r + fmap_gen for f in fm])
143
+ assert all([len(logits.shape) == 4 for logits in y_disc_r + y_disc_gen])
144
+
145
+
146
+ if __name__ == '__main__':
147
+ test(work to DRC and Spotify)