jeduardogruiz
commited on
Create Conv.py
Browse files
Conv.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""Convolutional layers tokens wrappers and utilities."""
|
8 |
+
|
9 |
+
import math
|
10 |
+
import typing as tp
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
from torch.nn import functional as F
|
16 |
+
from torch.nn.utils import spectral_norm, weight_norm
|
17 |
+
|
18 |
+
from .norm import ConvLayerNorm
|
19 |
+
|
20 |
+
|
21 |
+
CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
|
22 |
+
'time_layer_norm', 'layer_norm', 'time_group_norm'])
|
23 |
+
|
24 |
+
|
25 |
+
def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
|
26 |
+
assert norm in CONV_NORMALIZATIONS
|
27 |
+
if norm == 'weight_norm':
|
28 |
+
return weight_norm(module)
|
29 |
+
elif norm == 'spectral_norm':
|
30 |
+
return spectral_norm(module)
|
31 |
+
else:
|
32 |
+
# We already check was in CONV_NORMALIZATION, so any other choice
|
33 |
+
# doesn't need reparametrization.
|
34 |
+
return module
|
35 |
+
|
36 |
+
|
37 |
+
def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
|
38 |
+
"""Return the proper normalization module. If causal is True, this will ensure the returned
|
39 |
+
module is causal, or return an error if the normalization doesn't support causal evaluation.
|
40 |
+
"""
|
41 |
+
assert norm in CONV_NORMALIZATIONS
|
42 |
+
if norm == 'layer_norm':
|
43 |
+
assert isinstance(module, nn.modules.conv._ConvNd)
|
44 |
+
return ConvLayerNorm(module.out_channels, **norm_kwargs)
|
45 |
+
elif norm == 'time_group_norm':
|
46 |
+
if causal:
|
47 |
+
raise ValueError("GroupNorm doesn't support causal evaluation.")
|
48 |
+
assert isinstance(module, nn.modules.conv._ConvNd)
|
49 |
+
return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
|
50 |
+
else:
|
51 |
+
return nn.Identity()
|
52 |
+
|
53 |
+
|
54 |
+
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
|
55 |
+
padding_total: int = 0) -> int:
|
56 |
+
"""See `pad_for_conv1d`.
|
57 |
+
"""
|
58 |
+
length = x.shape[-1]
|
59 |
+
n_frames = (length - kernel_size + padding_total) / stride + 1
|
60 |
+
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
|
61 |
+
return ideal_length - length
|
62 |
+
|
63 |
+
|
64 |
+
def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
|
65 |
+
"""Pad for a convolution to make sure that the last window is full.
|
66 |
+
Extra padding is added at the end. This is required to ensure that we can rebuild
|
67 |
+
an output of the same length, as otherwise, even with padding, some time steps
|
68 |
+
might get removed.
|
69 |
+
For instance, with total padding = 4, kernel size = 4, stride = 2:
|
70 |
+
0 0 1 2 3 4 5 0 0 # (0s are padding)
|
71 |
+
1 2 3 # (output frames of a convolution, last 0 is never used)
|
72 |
+
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding)
|
73 |
+
1 2 3 4 # once you removed padding, we are missing one time step !
|
74 |
+
"""
|
75 |
+
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
76 |
+
return F.pad(x, (0, extra_padding))
|
77 |
+
|
78 |
+
|
79 |
+
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
|
80 |
+
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
81 |
+
If this is the case, we insert extra 0 padding to the right before the reflection happen.
|
82 |
+
"""
|
83 |
+
length = x.shape[-1]
|
84 |
+
padding_left, padding_right = paddings
|
85 |
+
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
86 |
+
if mode == 'reflect':
|
87 |
+
max_pad = max(padding_left, padding_right)
|
88 |
+
extra_pad = 0
|
89 |
+
if length <= max_pad:
|
90 |
+
extra_pad = max_pad - length + 1
|
91 |
+
x = F.pad(x, (0, extra_pad))
|
92 |
+
padded = F.pad(x, paddings, mode, value)
|
93 |
+
end = padded.shape[-1] - extra_pad
|
94 |
+
return padded[..., :end]
|
95 |
+
else:
|
96 |
+
return F.pad(x, paddings, mode, value)
|
97 |
+
|
98 |
+
|
99 |
+
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
|
100 |
+
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
|
101 |
+
padding_left, padding_right = paddings
|
102 |
+
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
103 |
+
assert (padding_left + padding_right) <= x.shape[-1]
|
104 |
+
end = x.shape[-1] - padding_right
|
105 |
+
return x[..., padding_left: end]
|
106 |
+
|
107 |
+
|
108 |
+
class NormConv1d(nn.Module):
|
109 |
+
"""Wrapper around Conv1d and normalization applied to this conv
|
110 |
+
to provide a uniform interface across normalization approaches.
|
111 |
+
"""
|
112 |
+
def __init__(self, *args, causal: bool = False, norm: str = 'none',
|
113 |
+
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
114 |
+
super().__init__()
|
115 |
+
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
|
116 |
+
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
|
117 |
+
self.norm_type = norm
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
x = self.conv(x)
|
121 |
+
x = self.norm(x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
class NormConv2d(nn.Module):
|
126 |
+
"""Wrapper around Conv2d and normalization applied to this conv
|
127 |
+
to provide a uniform interface across normalization approaches.
|
128 |
+
"""
|
129 |
+
def __init__(self, *args, norm: str = 'none',
|
130 |
+
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
131 |
+
super().__init__()
|
132 |
+
self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm)
|
133 |
+
self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs)
|
134 |
+
self.norm_type = norm
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
x = self.conv(x)
|
138 |
+
x = self.norm(x)
|
139 |
+
return x
|
140 |
+
|
141 |
+
|
142 |
+
class NormConvTranspose1d(nn.Module):
|
143 |
+
"""Wrapper around ConvTranspose1d and normalization applied to this conv
|
144 |
+
to provide a uniform interface across normalization approaches.
|
145 |
+
"""
|
146 |
+
def __init__(self, *args, causal: bool = False, norm: str = 'none',
|
147 |
+
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
148 |
+
super().__init__()
|
149 |
+
self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
|
150 |
+
self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
|
151 |
+
self.norm_type = norm
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
x = self.convtr(x)
|
155 |
+
x = self.norm(x)
|
156 |
+
return x
|
157 |
+
|
158 |
+
|
159 |
+
class NormConvTranspose2d(nn.Module):
|
160 |
+
"""Wrapper around ConvTranspose2d and normalization applied to this conv
|
161 |
+
to provide a uniform interface across normalization approaches.
|
162 |
+
"""
|
163 |
+
def __init__(self, *args, norm: str = 'none',
|
164 |
+
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
165 |
+
super().__init__()
|
166 |
+
self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm)
|
167 |
+
self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs)
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
x = self.convtr(x)
|
171 |
+
x = self.norm(x)
|
172 |
+
return x
|
173 |
+
|
174 |
+
|
175 |
+
class SConv1d(nn.Module):
|
176 |
+
"""Conv1d with some builtin handling of asymmetric or causal padding
|
177 |
+
and normalization.
|
178 |
+
"""
|
179 |
+
def __init__(self, in_channels: int, out_channels: int,
|
180 |
+
kernel_size: int, stride: int = 1, dilation: int = 1,
|
181 |
+
groups: int = 1, bias: bool = True, causal: bool = False,
|
182 |
+
norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
|
183 |
+
pad_mode: str = 'reflect'):
|
184 |
+
super().__init__()
|
185 |
+
# warn user on unusual setup between dilation and stride
|
186 |
+
if stride > 1 and dilation > 1:
|
187 |
+
warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1'
|
188 |
+
f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).')
|
189 |
+
self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
|
190 |
+
dilation=dilation, groups=groups, bias=bias, causal=causal,
|
191 |
+
norm=norm, norm_kwargs=norm_kwargs)
|
192 |
+
self.causal = causal
|
193 |
+
self.pad_mode = pad_mode
|
194 |
+
|
195 |
+
def forward(self, x):
|
196 |
+
B, C, T = x.shape
|
197 |
+
kernel_size = self.conv.conv.kernel_size[0]
|
198 |
+
stride = self.conv.conv.stride[0]
|
199 |
+
dilation = self.conv.conv.dilation[0]
|
200 |
+
kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations
|
201 |
+
padding_total = kernel_size - stride
|
202 |
+
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
203 |
+
if self.causal:
|
204 |
+
# Left padding for causal
|
205 |
+
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
|
206 |
+
else:
|
207 |
+
# Asymmetric padding required for odd strides
|
208 |
+
padding_right = padding_total // 2
|
209 |
+
padding_left = padding_total - padding_right
|
210 |
+
x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
|
211 |
+
return self.conv(x)
|
212 |
+
|
213 |
+
|
214 |
+
class SConvTranspose1d(nn.Module):
|
215 |
+
"""ConvTranspose1d with some builtin handling of asymmetric or causal padding
|
216 |
+
and normalization.
|
217 |
+
"""
|
218 |
+
def __init__(self, in_channels: int, out_channels: int,
|
219 |
+
kernel_size: int, stride: int = 1, causal: bool = False,
|
220 |
+
norm: str = 'none', trim_right_ratio: float = 1.,
|
221 |
+
norm_kwargs: tp.Dict[str, tp.Any] = {}):
|
222 |
+
super().__init__()
|
223 |
+
self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
|
224 |
+
causal=causal, norm=norm, norm_kwargs=norm_kwargs)
|
225 |
+
self.causal = causal
|
226 |
+
self.trim_right_ratio = trim_right_ratio
|
227 |
+
assert self.causal or self.trim_right_ratio == 1., \
|
228 |
+
"`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
|
229 |
+
assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
|
230 |
+
|
231 |
+
def forward(self, x):
|
232 |
+
kernel_size = self.convtr.convtr.kernel_size[0]
|
233 |
+
stride = self.convtr.convtr.stride[0]
|
234 |
+
padding_total = kernel_size - stride
|
235 |
+
|
236 |
+
y = self.convtr(x)
|
237 |
+
|
238 |
+
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
|
239 |
+
# removed at the very end, when keeping only the right length for the output,
|
240 |
+
# as removing it here would require also passing the length at the matching layer
|
241 |
+
# in the encoder.
|
242 |
+
if self.causal:
|
243 |
+
# Trim the padding on the right according to the specified ratio
|
244 |
+
# if trim_right_ratio = 1.0, trim everything from right
|
245 |
+
padding_right = math.ceil(padding_total * self.trim_right_ratio)
|
246 |
+
padding_left = padding_total - padding_right
|
247 |
+
y = unpad1d(y, (padding_left, padding_right))
|
248 |
+
else:
|
249 |
+
# Asymmetric padding required for odd strides
|
250 |
+
padding_right = padding_total // 2
|
251 |
+
padding_left = padding_total - padding_right
|
252 |
+
y = unpad1d(y, (padding_left, padding_right))
|
253 |
+
return y
|