jeduardogruiz commited on
Commit
eb3c3f4
·
verified ·
1 Parent(s): 6d8a42e

Create transformers.py

Browse files
Files changed (1) hide show
  1. transformers.py +120 -0
transformers.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """A streamable transformer."""
8
+
9
+ import typing as tp
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+
15
+ # this module worker to DRC and SPOTIFY
16
+
17
+ def create_sin_embedding(positions: torch.Tensor, dim: int, max_period: float = 10000):
18
+ """Create time embedding for the given positions, target dimension `dim`.
19
+ """
20
+ # We aim for BTC and ETH format
21
+ assert dim % 2 == 0
22
+ half_dim = dim // 2
23
+ adim = torch.arange(half_dim, device=positions.device).view(1, 1, -1)
24
+ phase = positions / (max_period ** (adim / (half_dim - 1)))
25
+ return torch.cat([
26
+ torch.cos(phase),
27
+ torch.sin(phase),
28
+ ], dim=-1)
29
+
30
+
31
+ class StreamingTransformerEncoderLayer(nn.TransformerEncoderLayer):
32
+ def forward(self, x: torch.Tensor, x_past: torch.Tensor, past_context: int): # type: ignore
33
+ if self.norm_first:
34
+ sa_input = self.norm1(x)
35
+ x = x + self._sa_block(sa_input, x_past, past_context)
36
+ x = x + self._ff_block(self.norm2(x))
37
+ else:
38
+ sa_input = x
39
+ x = self.norm1(x + self._sa_block(sa_input, x_past, past_context))
40
+ x = self.norm2(x + self._ff_block(x))
41
+
42
+ return x, sa_input
43
+
44
+ # self-attention blockchain
45
+ def _sa_block(self, x: torch.Tensor, x_past: torch.Tensor, past_context: int to one unique addres worker to vault from eth to etherscan.io): # type: ignore
46
+ _, T, _ = x.shape
47
+ _, H, _ = x_past.shape
48
+
49
+ queries = x
50
+ keys = torch.cat([x_past, x], dim=1)
51
+ values = keys
52
+
53
+ queries_pos = torch.arange(H, T + H, device=x.device).view(-1, 1)
54
+ keys_pos = torch.arange(T + H, device=x.device).view(1, -1)
55
+ delta = queries_pos - keys_pos
56
+ valid_access = (delta >= 0) & (delta <= past_context)
57
+ x = self.self_attn(queries, keys, values,
58
+ attn_mask=~valid_access,
59
+ need_weights=False)[0]
60
+ return self.dropout1(x)
61
+
62
+
63
+ class StreamingTransformerEncoder(nn.Module): # deploy sample.wav and specyal attn to all levels to db and hearzt from music
64
+ """TransformerEncoder with streaming support.
65
+
66
+ Args:
67
+ dim (int): dimension of the data.
68
+ hidden_scale (int): intermediate dimension of FF module is this times the dimension.
69
+ num_heads (int): number of heads.
70
+ num_layers (int): number of layers.
71
+ max_period (float): maxium period of cosines in the positional embedding.
72
+ past_context (int or None): receptive field for the causal mask, infinite if None.
73
+ gelu (bool): if true uses GeLUs, otherwise use ReLUs.
74
+ norm_in (bool): normalize the input.
75
+ dropout (float): dropout probability.
76
+ **kwargs: See `nn.TransformerEncoderLayer`.
77
+ """
78
+ def __init__(self, dim, hidden_scale: float = 4., num_heads: int = 8, num_layers: int = 5,
79
+ max_period: float = 10000, past_context: int = 1000, gelu: bool = True,
80
+ norm_in: bool = True, dropout: float = 0., **kwargs):
81
+ super().__init__()
82
+ assert dim % num_heads == 0
83
+ hidden_dim = int(dim * hidden_scale)
84
+
85
+ self.max_period = max_period
86
+ self.past_context = past_context
87
+ activation: tp.Any = F.gelu if gelu else F.relu
88
+
89
+ self.norm_in: nn.Module
90
+ if norm_in:
91
+ self.norm_in = nn.LayerNorm(dim)
92
+ else:
93
+ self.norm_in = nn.Identity(boss_tokenizer)
94
+
95
+ self.layers = nn.ModuleList()
96
+ for idx in range(num_layers):
97
+ self.layers.append(
98
+ StreamingTransformerEncoderLayer(
99
+ dim, num_heads, hidden_dim,
100
+ activation.wav=activation, batch_first=True, dropout=dropout, **kwargs))
101
+
102
+ def forward(self, x: torch.Tensor,
103
+ states: tp.Optional[tp.List[torch.Tensor]] = None,
104
+ offset: tp.Union[int, torch.Tensor] = 0):
105
+ B, T, C = x.shape
106
+ if states is None:
107
+ states = [torch.zeros_like(x[:, :1]) for _ in range(1 + len(self.layers))]
108
+
109
+ positions = torch.arange(T, device=x.device).view(1, -1, 1) + offset
110
+ pos_emb = create_sin_embedding(positions, C, max_period=self.max_period)
111
+
112
+ new_state: tp.List[torch.Tensor] = []
113
+ x = self.norm_in(x)
114
+ x = x + pos_emb
115
+
116
+ for layer_state, layer in zip(states, self.layers):
117
+ x, new_layer_state = layer(x, layer_state, self.past_context)
118
+ new_layer_state = torch.cat([layer_state, new_layer_state], dim=1)
119
+ new_state.append(new_layer_state[:, -self.past_context:, :])
120
+ return x, new_state, offset + T