swin-large-patch4-window7-224-fv-finetuned-memes

This model is a fine-tuned version of microsoft/swin-large-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6502
  • Accuracy: 0.8601
  • Precision: 0.8582
  • Recall: 0.8601
  • F1: 0.8583

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.2077 0.99 20 0.9499 0.6461 0.6764 0.6461 0.5863
0.5687 1.99 40 0.5365 0.7975 0.8018 0.7975 0.7924
0.3607 2.99 60 0.4007 0.8423 0.8419 0.8423 0.8398
0.203 3.99 80 0.3751 0.8509 0.8502 0.8509 0.8503
0.1728 4.99 100 0.4168 0.8509 0.8519 0.8509 0.8506
0.0963 5.99 120 0.4351 0.8586 0.8573 0.8586 0.8555
0.0956 6.99 140 0.4415 0.8547 0.8542 0.8547 0.8541
0.079 7.99 160 0.5312 0.8501 0.8475 0.8501 0.8459
0.0635 8.99 180 0.5376 0.8601 0.8578 0.8601 0.8577
0.0593 9.99 200 0.5060 0.8609 0.8615 0.8609 0.8604
0.0656 10.99 220 0.4997 0.8617 0.8573 0.8617 0.8587
0.0561 11.99 240 0.5430 0.8586 0.8604 0.8586 0.8589
0.0523 12.99 260 0.5354 0.8624 0.8643 0.8624 0.8626
0.0489 13.99 280 0.5539 0.8609 0.8572 0.8609 0.8577
0.0487 14.99 300 0.5785 0.8609 0.8591 0.8609 0.8591
0.0485 15.99 320 0.6186 0.8601 0.8578 0.8601 0.8573
0.0518 16.99 340 0.6342 0.8624 0.8612 0.8624 0.8606
0.0432 17.99 360 0.6302 0.8586 0.8598 0.8586 0.8580
0.0469 18.99 380 0.6323 0.8617 0.8606 0.8617 0.8604
0.0426 19.99 400 0.6502 0.8601 0.8582 0.8601 0.8583

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1.dev0
  • Tokenizers 0.13.1
Downloads last month
25
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results