swin-base-patch4-window7-224-in22k-finetuned-memes

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7094
  • Accuracy: 0.8563
  • Precision: 0.8546
  • Recall: 0.8563
  • F1: 0.8552

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1655 0.99 20 0.8573 0.6955 0.6953 0.6955 0.6683
0.5506 1.99 40 0.5327 0.8083 0.8050 0.8083 0.7963
0.3573 2.99 60 0.4497 0.8338 0.8339 0.8338 0.8317
0.2083 3.99 80 0.4561 0.8354 0.8450 0.8354 0.8368
0.1545 4.99 100 0.4605 0.8423 0.8458 0.8423 0.8430
0.1014 5.99 120 0.4924 0.8524 0.8571 0.8524 0.8538
0.0854 6.99 140 0.5759 0.8393 0.8452 0.8393 0.8400
0.1012 7.99 160 0.5142 0.8362 0.8378 0.8362 0.8361
0.077 8.99 180 0.5647 0.8331 0.8538 0.8331 0.8407
0.0667 9.99 200 0.5294 0.8462 0.8509 0.8462 0.8483
0.0666 10.99 220 0.6038 0.8385 0.8415 0.8385 0.8396
0.0574 11.99 240 0.6384 0.8408 0.8431 0.8408 0.8411
0.0488 12.99 260 0.6305 0.8516 0.8561 0.8516 0.8532
0.0524 13.99 280 0.6411 0.8509 0.8526 0.8509 0.8510
0.0511 14.99 300 0.6462 0.8547 0.8542 0.8547 0.8543
0.0495 15.99 320 0.6869 0.8532 0.8534 0.8532 0.8527
0.0412 16.99 340 0.6643 0.8578 0.8554 0.8578 0.8564
0.0411 17.99 360 0.7214 0.8570 0.8539 0.8570 0.8552
0.0434 18.99 380 0.7037 0.8524 0.8507 0.8524 0.8514
0.0394 19.99 400 0.7094 0.8563 0.8546 0.8563 0.8552

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1.dev0
  • Tokenizers 0.13.1
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results