|
--- |
|
base_model: |
|
- black-forest-labs/FLUX.1-dev |
|
library_name: diffusers |
|
license_name: flux-1-dev-non-commercial-license |
|
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md |
|
pipeline_tag: image-to-image |
|
inference: False |
|
tags: |
|
- ControlNet |
|
license: other |
|
--- |
|
# ⚡ Flux.1-dev: Surface Normals ControlNet ⚡ |
|
|
|
This is [Flux.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) ControlNet for Surface Normals map developed by Jasper research team. |
|
|
|
<p align="center"> |
|
<img style="width:700px;" src="examples/showcase.jpg"> |
|
</p> |
|
|
|
# How to use |
|
This model can be used directly with the `diffusers` library |
|
|
|
```python |
|
import torch |
|
from diffusers.utils import load_image |
|
from diffusers import FluxControlNetModel |
|
from diffusers.pipelines import FluxControlNetPipeline |
|
|
|
# Load pipeline |
|
controlnet = FluxControlNetModel.from_pretrained( |
|
"jasperai/Flux.1-dev-Controlnet-Surface-Normals", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
pipe = FluxControlNetPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", |
|
controlnet=controlnet, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
pipe.to("cuda") |
|
|
|
# Load a control image |
|
control_image = load_image( |
|
"https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Surface-Normals/resolve/main/examples/surface.jpg" |
|
) |
|
|
|
prompt = "a man showing stop sign in front of window" |
|
|
|
image = pipe( |
|
prompt, |
|
control_image=control_image, |
|
controlnet_conditioning_scale=0.6, |
|
num_inference_steps=28, |
|
guidance_scale=3.5, |
|
height=control_image.size[1], |
|
width=control_image.size[0] |
|
).images[0] |
|
image |
|
``` |
|
|
|
<p align="center"> |
|
<img style="width:500px;" src="examples/output.jpg"> |
|
</p> |
|
|
|
💡 Note: You can compute the conditioning map using the `NormalBaeDetector` from the `controlnet_aux` library |
|
|
|
```python |
|
from controlnet_aux import NormalBaeDetector |
|
from diffusers.utils import load_image |
|
|
|
normal_bae = NormalBaeDetector.from_pretrained("lllyasviel/Annotators") |
|
|
|
normal_bae.to("cuda") |
|
|
|
# Load an image |
|
im = load_image( |
|
"https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Surface-Normals/resolve/main/examples/output.jpg" |
|
) |
|
|
|
surface = normal_bae(im) |
|
``` |
|
|
|
|
|
# Training |
|
This model was trained with surface normals maps computed with [Clipdrop's surface normals estimator model](https://clipdrop.co/apis/docs/portrait-surface-normals) as well as an open-souce surface normals estimation model such as Boundary Aware Encoder (BAE). |
|
|
|
# Licence |
|
This model falls under the [Flux.1-dev model licence](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). |