jakiAJK commited on
Commit
ce02673
·
verified ·
1 Parent(s): 02021bf

Upload tokenizer

Browse files
special_tokens_map.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>",
9
+ "<restate>",
10
+ "</restate>",
11
+ "<planning>",
12
+ "</planning>",
13
+ "<recollect>",
14
+ "</recollect>",
15
+ "<execution>",
16
+ "</execution>",
17
+ "<review>",
18
+ "</review>",
19
+ "<summarize>",
20
+ "</summarize>",
21
+ "<retry>",
22
+ "</retry>",
23
+ "<conclude>",
24
+ "</conclude>"
25
+ ],
26
+ "bos_token": {
27
+ "content": "<s>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "eos_token": {
34
+ "content": "</s>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "pad_token": {
41
+ "content": "</s>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ },
47
+ "unk_token": {
48
+ "content": "<unk>",
49
+ "lstrip": false,
50
+ "normalized": false,
51
+ "rstrip": false,
52
+ "single_word": false
53
+ }
54
+ }
tokenization_internlm3.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from shutil import copyfile
3
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
4
+
5
+ import sentencepiece as spm
6
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
7
+ from transformers.utils import logging
8
+
9
+ if TYPE_CHECKING:
10
+ from transformers.tokenization_utils_base import TextInput
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
15
+
16
+ SPIECE_UNDERLINE = "▁"
17
+
18
+
19
+ class InternLM3Tokenizer(PreTrainedTokenizer):
20
+ """
21
+ Construct a InternLM3 tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
22
+ no padding token in the original model.
23
+
24
+ Args:
25
+ vocab_file (`str`):
26
+ Path to the vocabulary file.
27
+ unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
28
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
29
+ token instead.
30
+ bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
31
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
32
+ eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
33
+ The end of sequence token.
34
+ pad_token (`str` or `tokenizers.AddedToken`, *optional*):
35
+ A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
36
+ attention mechanisms or loss computation.
37
+ sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
38
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
39
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
40
+ to set:
41
+
42
+ - `enable_sampling`: Enable subword regularization.
43
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
44
+
45
+ - `nbest_size = {0,1}`: No sampling is performed.
46
+ - `nbest_size > 1`: samples from the nbest_size results.
47
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
48
+ using forward-filtering-and-backward-sampling algorithm.
49
+
50
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
51
+ BPE-dropout.
52
+
53
+ add_bos_token (`bool`, *optional*, defaults to `True`):
54
+ Whether or not to add an `bos_token` at the start of sequences.
55
+ add_eos_token (`bool`, *optional*, defaults to `False`):
56
+ Whether or not to add an `eos_token` at the end of sequences.
57
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
58
+ Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
59
+ extra spaces.
60
+ use_default_system_prompt (`bool`, *optional*, defaults to `False`):
61
+ Whether or not the default system prompt for InternLM3 should be used.
62
+ spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
63
+ Whether or not to add spaces between special tokens.
64
+ spaces_for_interleaved_special_tokens (`bool`, *optional*, defaults to `False`):
65
+ Whether or not to add spaces between special tokens that are interleaved with normal tokens.
66
+ add_prefix_space (`bool`, *optional*, defaults to `True`):
67
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
68
+ other word. Again, this should be set with `from_slow=True` to make sure it's taken into account.
69
+ """
70
+
71
+ vocab_files_names = VOCAB_FILES_NAMES
72
+ model_input_names = ["input_ids", "attention_mask"]
73
+
74
+ def __init__(
75
+ self,
76
+ vocab_file,
77
+ unk_token="<unk>",
78
+ bos_token="<s>",
79
+ eos_token="</s>",
80
+ pad_token=None,
81
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
82
+ add_bos_token=True,
83
+ add_eos_token=False,
84
+ clean_up_tokenization_spaces=False,
85
+ use_default_system_prompt=False,
86
+ spaces_between_special_tokens=False,
87
+ spaces_for_interleaved_special_tokens=False,
88
+ add_prefix_space=True,
89
+ **kwargs,
90
+ ):
91
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
92
+ bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
93
+ eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
94
+ unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
95
+ pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
96
+
97
+ self.vocab_file = vocab_file
98
+ self.add_bos_token = add_bos_token
99
+ self.add_eos_token = add_eos_token
100
+ self.use_default_system_prompt = use_default_system_prompt
101
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
102
+ self.sp_model.Load(vocab_file)
103
+ self.add_prefix_space = add_prefix_space
104
+ self.spaces_for_interleaved_special_tokens = spaces_for_interleaved_special_tokens
105
+
106
+ vocab_size = self.sp_model.get_piece_size()
107
+ self.decoder = {i: self.sp_model.id_to_piece(i) for i in range(vocab_size)}
108
+
109
+ super().__init__(
110
+ bos_token=bos_token,
111
+ eos_token=eos_token,
112
+ unk_token=unk_token,
113
+ pad_token=pad_token,
114
+ add_bos_token=add_bos_token,
115
+ add_eos_token=add_eos_token,
116
+ sp_model_kwargs=sp_model_kwargs,
117
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
118
+ use_default_system_prompt=use_default_system_prompt,
119
+ spaces_between_special_tokens=spaces_between_special_tokens,
120
+ add_prefix_space=add_prefix_space,
121
+ **kwargs,
122
+ )
123
+
124
+ def __getstate__(self):
125
+ state = self.__dict__.copy()
126
+ state["sp_model"] = None
127
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
128
+ return state
129
+
130
+ def __setstate__(self, d):
131
+ self.__dict__.update(d)
132
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
133
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
134
+
135
+ @property
136
+ def vocab_size(self):
137
+ """Returns vocab size"""
138
+ return self.sp_model.get_piece_size()
139
+
140
+ def get_vocab(self):
141
+ """Returns vocab as a dict"""
142
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
143
+ vocab.update(self.added_tokens_encoder)
144
+ return vocab
145
+
146
+ def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
147
+ """
148
+ Args:
149
+ text: TextInput
150
+ Simply calls PreTrainedTokenizer's method
151
+ """
152
+ return super().tokenize(text, **kwargs)
153
+
154
+ def _tokenize(self, text, **kwargs):
155
+ """
156
+ Args:
157
+ text: TextInput
158
+ Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
159
+ """
160
+ return self.sp_model.encode(text, out_type=str)
161
+
162
+ def _convert_token_to_id(self, token):
163
+ """Converts a token (str) in an id using the vocab."""
164
+ return self.sp_model.piece_to_id(token)
165
+
166
+ def _convert_id_to_token(self, index):
167
+ """Converts an index (integer) in a token (str) using the vocab."""
168
+ return self.decoder.get(index, "")
169
+
170
+ def convert_tokens_to_string(self, tokens):
171
+ """Converts a sequence of tokens (string) in a single string."""
172
+ # since we manually add the prefix space, we have to remove it when decoding
173
+ if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
174
+ tokens[0] = tokens[0][1:]
175
+
176
+ current_sub_tokens = []
177
+ out_string = ""
178
+ prev_is_special = False
179
+ for i, token in enumerate(tokens):
180
+ # make sure that special tokens are not decoded using sentencepiece model
181
+ if token in self.all_special_tokens:
182
+ if not prev_is_special and i != 0 and self.spaces_for_interleaved_special_tokens:
183
+ out_string += " "
184
+ out_string += self.sp_model.decode(current_sub_tokens) + token
185
+ prev_is_special = True
186
+ current_sub_tokens = []
187
+ else:
188
+ if (
189
+ prev_is_special
190
+ and i == 1
191
+ and self.add_prefix_space
192
+ and not token.startswith(SPIECE_UNDERLINE)
193
+ and self.spaces_for_interleaved_special_tokens
194
+ ):
195
+ out_string += " "
196
+ current_sub_tokens.append(token)
197
+ prev_is_special = False
198
+ out_string += self.sp_model.decode(current_sub_tokens)
199
+ return out_string
200
+
201
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
202
+ """
203
+ Save the vocabulary and special tokens file to a directory.
204
+
205
+ Args:
206
+ save_directory (`str`):
207
+ The directory in which to save the vocabulary.
208
+
209
+ Returns:
210
+ `Tuple(str)`: Paths to the files saved.
211
+ """
212
+ if not os.path.isdir(save_directory):
213
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
214
+ return
215
+ out_vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
216
+
217
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
218
+ copyfile(self.vocab_file, out_vocab_file)
219
+ elif not os.path.isfile(self.vocab_file):
220
+ with open(out_vocab_file, "wb") as fi:
221
+ content_spiece_model = self.sp_model.serialized_model_proto()
222
+ fi.write(content_spiece_model)
223
+
224
+ return (out_vocab_file,)
225
+
226
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
227
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
228
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
229
+
230
+ output = bos_token_id + token_ids_0 + eos_token_id
231
+
232
+ if token_ids_1 is not None:
233
+ output = output + bos_token_id + token_ids_1 + eos_token_id
234
+
235
+ return output
236
+
237
+ def get_special_tokens_mask(
238
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
239
+ ) -> List[int]:
240
+ """
241
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
242
+ special tokens using the tokenizer `prepare_for_model` method.
243
+
244
+ Args:
245
+ token_ids_0 (`List[int]`):
246
+ List of IDs.
247
+ token_ids_1 (`List[int]`, *optional*):
248
+ Optional second list of IDs for sequence pairs.
249
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
250
+ Whether or not the token list is already formatted with special tokens for the model.
251
+
252
+ Returns:
253
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
254
+ """
255
+ if already_has_special_tokens:
256
+ return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
257
+
258
+ bos_token_id = [1] if self.add_bos_token else []
259
+ eos_token_id = [1] if self.add_eos_token else []
260
+
261
+ if token_ids_1 is None:
262
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
263
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id
264
+
265
+ def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]:
266
+ """
267
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
268
+ sequence pair mask has the following format:
269
+
270
+ ```
271
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
272
+ | first sequence | second sequence |
273
+ ```
274
+
275
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
276
+
277
+ Args:
278
+ token_ids_0 (`List[int]`):
279
+ List of ids.
280
+ token_ids_1 (`List[int]`, *optional*):
281
+ Optional second list of IDs for sequence pairs.
282
+
283
+ Returns:
284
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
285
+ """
286
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
287
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
288
+
289
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
290
+
291
+ if token_ids_1 is not None:
292
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
293
+
294
+ return output
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcacff3229854f5103ee7a85473a30ca9a8b3a68f3aae9b7479574b23ac2256b
3
+ size 2475075
tokenizer_config.json ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "128111": {
31
+ "content": "<restate>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "128112": {
39
+ "content": "</restate>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "128113": {
47
+ "content": "<planning>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "128114": {
55
+ "content": "</planning>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "128115": {
63
+ "content": "<recollect>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "128116": {
71
+ "content": "</recollect>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "128117": {
79
+ "content": "<execution>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "128118": {
87
+ "content": "</execution>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "128119": {
95
+ "content": "<review>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "128120": {
103
+ "content": "</review>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "128121": {
111
+ "content": "<summarize>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "128122": {
119
+ "content": "</summarize>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "128123": {
127
+ "content": "<retry>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "128124": {
135
+ "content": "</retry>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "128125": {
143
+ "content": "<conclude>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "128126": {
151
+ "content": "</conclude>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "128127": {
159
+ "content": "<|plugin|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "128128": {
167
+ "content": "<|interpreter|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "128129": {
175
+ "content": "<|action_end|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "128130": {
183
+ "content": "<|action_start|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "128131": {
191
+ "content": "<|im_end|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "128132": {
199
+ "content": "<|im_start|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ }
206
+ },
207
+ "additional_special_tokens": [
208
+ "<|im_start|>",
209
+ "<|im_end|>",
210
+ "<|action_start|>",
211
+ "<|action_end|>",
212
+ "<|interpreter|>",
213
+ "<|plugin|>",
214
+ "<restate>",
215
+ "</restate>",
216
+ "<planning>",
217
+ "</planning>",
218
+ "<recollect>",
219
+ "</recollect>",
220
+ "<execution>",
221
+ "</execution>",
222
+ "<review>",
223
+ "</review>",
224
+ "<summarize>",
225
+ "</summarize>",
226
+ "<retry>",
227
+ "</retry>",
228
+ "<conclude>",
229
+ "</conclude>"
230
+ ],
231
+ "auto_map": {
232
+ "AutoTokenizer": [
233
+ "tokenization_internlm3.InternLM3Tokenizer",
234
+ null
235
+ ]
236
+ },
237
+ "bos_token": "<s>",
238
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
239
+ "clean_up_tokenization_spaces": false,
240
+ "eos_token": "</s>",
241
+ "extra_special_tokens": {},
242
+ "model_max_length": 1000000000000000019884624838656,
243
+ "pad_token": "</s>",
244
+ "sp_model_kwargs": {},
245
+ "spaces_between_special_tokens": false,
246
+ "tokenizer_class": "InternLM3Tokenizer",
247
+ "unk_token": "<unk>",
248
+ "use_default_system_prompt": false
249
+ }