jakiAJK commited on
Commit
02021bf
·
verified ·
1 Parent(s): 326f183

Upload InternLM3ForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./tmp_autoround_gptq",
3
+ "architectures": [
4
+ "InternLM3ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internlm3.InternLM3Config",
9
+ "AutoModel": "modeling_internlm3.InternLM3Model",
10
+ "AutoModelForCausalLM": "modeling_internlm3.InternLM3ForCausalLM"
11
+ },
12
+ "bias": false,
13
+ "bos_token_id": 1,
14
+ "eos_token_id": 2,
15
+ "head_dim": 128,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 10240,
20
+ "max_position_embeddings": 32768,
21
+ "model_type": "internlm3",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 48,
24
+ "num_key_value_heads": 2,
25
+ "pad_token_id": 2,
26
+ "qkv_bias": false,
27
+ "quantization_config": {
28
+ "batch_size": 4,
29
+ "bits": 4,
30
+ "block_name_to_quantize": null,
31
+ "cache_block_outputs": true,
32
+ "damp_percent": 0.01,
33
+ "dataset": null,
34
+ "desc_act": false,
35
+ "exllama_config": {
36
+ "version": 1
37
+ },
38
+ "group_size": 128,
39
+ "max_input_length": null,
40
+ "model_seqlen": null,
41
+ "module_name_preceding_first_block": null,
42
+ "modules_in_block_to_quantize": null,
43
+ "pad_token_id": null,
44
+ "quant_method": "gptq",
45
+ "sym": true,
46
+ "tokenizer": null,
47
+ "true_sequential": false,
48
+ "use_cuda_fp16": false,
49
+ "use_exllama": true
50
+ },
51
+ "rms_norm_eps": 1e-05,
52
+ "rope_scaling": {
53
+ "factor": 6.0,
54
+ "rope_type": "dynamic"
55
+ },
56
+ "rope_theta": 50000000,
57
+ "tie_word_embeddings": false,
58
+ "torch_dtype": "bfloat16",
59
+ "transformers_version": "4.48.0",
60
+ "use_cache": true,
61
+ "vocab_size": 128512
62
+ }
configuration_internlm3.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM3 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.modeling_rope_utils import rope_config_validation
21
+ from transformers.utils import logging
22
+
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ class InternLM3Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 151936):
39
+ Vocabulary size of the InternLM3 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM3Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 22016):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*, defaults to 32):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
59
+ The maximum sequence length that this model might ever be used with.
60
+ initializer_range (`float`, *optional*, defaults to 0.02):
61
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
62
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
63
+ The epsilon used by the rms normalization layers.
64
+ use_cache (`bool`, *optional*, defaults to `True`):
65
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
66
+ relevant if `config.is_decoder=True`.
67
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
68
+ Whether the model's input and output word embeddings should be tied.
69
+ rope_theta (`float`, *optional*, defaults to 10000.0):
70
+ The base period of the RoPE embeddings.
71
+ rope_scaling (`Dict`, *optional*):
72
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
73
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
74
+ accordingly.
75
+ Expected contents:
76
+ `rope_type` (`str`):
77
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
78
+ 'llama3'], with 'default' being the original RoPE implementation.
79
+ `factor` (`float`, *optional*):
80
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
81
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
82
+ original maximum pre-trained length.
83
+ `original_max_position_embeddings` (`int`, *optional*):
84
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
85
+ pretraining.
86
+ `attention_factor` (`float`, *optional*):
87
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
88
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
89
+ `factor` field to infer the suggested value.
90
+ `beta_fast` (`float`, *optional*):
91
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
92
+ ramp function. If unspecified, it defaults to 32.
93
+ `beta_slow` (`float`, *optional*):
94
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
95
+ ramp function. If unspecified, it defaults to 1.
96
+ `short_factor` (`List[float]`, *optional*):
97
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
98
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
99
+ size divided by the number of attention heads divided by 2
100
+ `long_factor` (`List[float]`, *optional*):
101
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
102
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
103
+ size divided by the number of attention heads divided by 2
104
+ `low_freq_factor` (`float`, *optional*):
105
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
106
+ `high_freq_factor` (`float`, *optional*):
107
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
108
+ qkv_bias (`bool`, *optional*, defaults to `False`):
109
+ Whether to use a bias in the query, key and value projection layers during self-attention.
110
+ attention_dropout (`float`, *optional*, defaults to 0.0):
111
+ The dropout ratio for the attention probabilities.
112
+ bias (`bool`, *optional*, defaults to `False`):
113
+ Whether to use a bias in o_proj, up_proj, down_proj and gate_proj layers.
114
+ head_dim (`int`, *optional*):
115
+ The attention head dimension. If None, it will default to hidden_size // num_heads
116
+
117
+ ```python
118
+ >>> from transformers import InternLM3Model, InternLM3Config
119
+
120
+ >>> # Initializing a InternLM3 style configuration
121
+ >>> configuration = InternLM3Config()
122
+
123
+ >>> # Initializing a model from the InternLM3-8B style configuration
124
+ >>> model = InternLM3Model(configuration)
125
+
126
+ >>> # Accessing the model configuration
127
+ >>> configuration = model.config
128
+ ```"""
129
+
130
+ model_type = "internlm3"
131
+ keys_to_ignore_at_inference = ["past_key_values"]
132
+
133
+ # Default tensor parallel plan for base model `InternLM3`
134
+ base_model_tp_plan = {
135
+ "layers.*.self_attn.q_proj": "colwise",
136
+ "layers.*.self_attn.k_proj": "colwise",
137
+ "layers.*.self_attn.v_proj": "colwise",
138
+ "layers.*.self_attn.o_proj": "rowwise",
139
+ "layers.*.mlp.gate_proj": "colwise",
140
+ "layers.*.mlp.up_proj": "colwise",
141
+ "layers.*.mlp.down_proj": "rowwise",
142
+ }
143
+
144
+ def __init__(
145
+ self,
146
+ vocab_size=128512,
147
+ hidden_size=4096,
148
+ intermediate_size=11008,
149
+ num_hidden_layers=32,
150
+ num_attention_heads=32,
151
+ num_key_value_heads=32,
152
+ hidden_act="silu",
153
+ max_position_embeddings=32768,
154
+ initializer_range=0.02,
155
+ rms_norm_eps=1e-6,
156
+ use_cache=True,
157
+ tie_word_embeddings=False,
158
+ rope_theta=10000.0,
159
+ rope_scaling=None,
160
+ qkv_bias=False,
161
+ attention_dropout=0.0,
162
+ bias=False,
163
+ head_dim=None,
164
+ **kwargs,
165
+ ):
166
+ self.vocab_size = vocab_size
167
+ self.max_position_embeddings = max_position_embeddings
168
+ self.hidden_size = hidden_size
169
+ self.intermediate_size = intermediate_size
170
+ self.num_hidden_layers = num_hidden_layers
171
+ self.num_attention_heads = num_attention_heads
172
+
173
+ # for backward compatibility
174
+ if num_key_value_heads is None:
175
+ num_key_value_heads = num_attention_heads
176
+
177
+ self.num_key_value_heads = num_key_value_heads
178
+ self.hidden_act = hidden_act
179
+ self.initializer_range = initializer_range
180
+ self.rms_norm_eps = rms_norm_eps
181
+ self.use_cache = use_cache
182
+ self.rope_theta = rope_theta
183
+ self.rope_scaling = rope_scaling
184
+ self.qkv_bias = qkv_bias
185
+ self.attention_dropout = attention_dropout
186
+ self.bias = bias
187
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
188
+ # Validate the correctness of rotary position embeddings parameters
189
+ # BC: if there is a 'type' field, move it to 'rope_type'.
190
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
191
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
192
+ rope_config_validation(self)
193
+
194
+ super().__init__(
195
+ tie_word_embeddings=tie_word_embeddings,
196
+ **kwargs,
197
+ )
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": [
4
+ 2,
5
+ 128131
6
+ ],
7
+ "pad_token_id": 2,
8
+ "transformers_version": "4.48.0"
9
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a08153833ba78a67e6887325ddc833ed6c3d14f7b0f9df4f9d7bc472bcbc857
3
+ size 4981451320
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e43e2ac30a44d9261dc52e1660f47044a28c5e31e88f2faa0ade1f34c9c1eb0d
3
+ size 1158656104
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff