Requirements

pip install -U transformers autoawq

Transformers inference

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
device = "auto"

model_name = "jakiAJK/DeepSeek-R1-Distill-Llama-8B_AWQ"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map= device, trust_remote_code= True, torch_dtype= dtype)

model.eval()

chat = [
    { "role": "user", "content": "List any 5 country capitals." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

input_tokens = tokenizer(chat, return_tensors="pt").to('cuda')

output = model.generate(**input_tokens, 
                        max_new_tokens=100)

output = tokenizer.batch_decode(output)

print(output)
Downloads last month
3
Safetensors
Model size
1.98B params
Tensor type
BF16
·
I32
·
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jakiAJK/DeepSeek-R1-Distill-Llama-8B_AWQ

Quantized
(48)
this model