distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9401
  • Accuracy: {'accuracy': 0.894}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4820 {'accuracy': 0.871}
0.4484 2.0 500 0.5434 {'accuracy': 0.858}
0.4484 3.0 750 0.7357 {'accuracy': 0.853}
0.2071 4.0 1000 0.5956 {'accuracy': 0.899}
0.2071 5.0 1250 0.8141 {'accuracy': 0.88}
0.0731 6.0 1500 0.8197 {'accuracy': 0.882}
0.0731 7.0 1750 0.9412 {'accuracy': 0.888}
0.0201 8.0 2000 0.9169 {'accuracy': 0.894}
0.0201 9.0 2250 0.9390 {'accuracy': 0.892}
0.0111 10.0 2500 0.9401 {'accuracy': 0.894}

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Safetensors
Model size
67M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for jackson176/distilbert-base-uncased-lora-text-classification

Adapter
(228)
this model