distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9401
- Accuracy: {'accuracy': 0.894}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.4820 | {'accuracy': 0.871} |
0.4484 | 2.0 | 500 | 0.5434 | {'accuracy': 0.858} |
0.4484 | 3.0 | 750 | 0.7357 | {'accuracy': 0.853} |
0.2071 | 4.0 | 1000 | 0.5956 | {'accuracy': 0.899} |
0.2071 | 5.0 | 1250 | 0.8141 | {'accuracy': 0.88} |
0.0731 | 6.0 | 1500 | 0.8197 | {'accuracy': 0.882} |
0.0731 | 7.0 | 1750 | 0.9412 | {'accuracy': 0.888} |
0.0201 | 8.0 | 2000 | 0.9169 | {'accuracy': 0.894} |
0.0201 | 9.0 | 2250 | 0.9390 | {'accuracy': 0.892} |
0.0111 | 10.0 | 2500 | 0.9401 | {'accuracy': 0.894} |
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 1
Model tree for jackson176/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased