This repo contains a low-rank adapter for LLaMA-13b fit on the llm-japanese-dataset dataset.
You can test this at https://huggingface.co/spaces/izumi-lab/llama-13b-japanese-lora-v0-1ep
This version of the weights was trained with the following hyperparameters:
- Epochs: 1
- Batch size: 130
- Cutoff length: 256
- Learning rate: 3e-4
- Lora r: 4
- Lora target modules: q_proj, v_proj
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import PeftModel
base_model = "decapoda-research/llama-13b-hf"
# Please note that the special license of decapoda-research/llama-13b-hf is applied.
model = LlamaForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
model = PeftModel.from_pretrained(
model,
"izumi-lab/llama-13b-japanese-lora-v0",
torch_dtype=torch.float16,
)
To see more latest information, please go to llm.msuzuki.me.
Details
- Japanese Paper: https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/383
- English Paper: https://arxiv.org/abs/2305.12720
- GitHub: https://github.com/masanorihirano/llm-japanese-dataset
- Website: llm.msuzuki.me.
Citation:
@preprint{Hirano2023-llmj,
title={{llm-japanese-dataset v0: Construction of Japanese Chat Dataset for Large Language Models and its Methodology}},
autor={Masanori HIRANO and Masahiro SUZUKI and Hiroki SAKAJI},
doi={10.48550/arXiv.2305.12720},
archivePrefix={arXiv},
arxivId={2305.12720},
year={2023}
}
If you have any inquiries, such as joint research, data provision, various types of support, please email to [email protected] .