gbert-large-upos

This model is a fine-tuned version of deepset/gbert-large on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1996
  • Precision: 0.8253
  • Recall: 0.7827
  • F1: 0.7912
  • Accuracy: 0.9414

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 438 0.3197 0.8098 0.7291 0.7486 0.8936
No log 2.0 876 0.2261 0.8287 0.7679 0.7832 0.9269
No log 3.0 1314 0.1996 0.8253 0.7827 0.7912 0.9414
No log 4.0 1752 0.2183 0.8162 0.8006 0.8041 0.9435
No log 5.0 2190 0.2120 0.8198 0.8025 0.8074 0.9496
No log 6.0 2628 0.2339 0.8207 0.8068 0.8116 0.9489
No log 7.0 3066 0.2728 0.8156 0.8045 0.8071 0.9486
No log 8.0 3504 0.2790 0.8205 0.8110 0.8132 0.9527
No log 9.0 3942 0.2854 0.8306 0.8096 0.8146 0.9527
No log 10.0 4380 0.2906 0.8299 0.8115 0.8151 0.9534

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
335M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for izaitova/gbert-large-upos

Finetuned
(14)
this model

Dataset used to train izaitova/gbert-large-upos

Evaluation results