Files changed (2) hide show
  1. LICENSE.txt +201 -0
  2. README.md +195 -21
LICENSE.txt ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2023-2024 Shanghai AI Laboratory
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -89,7 +89,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
89
  model_dir = "internlm/internlm3-8b-instruct"
90
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
91
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
92
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
93
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
94
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
95
  # pip install -U bitsandbytes
@@ -104,7 +104,7 @@ messages = [
104
  {"role": "system", "content": system_prompt},
105
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
106
  ]
107
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
108
 
109
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
110
 
@@ -113,7 +113,7 @@ generated_ids = [
113
  ]
114
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
115
  print(prompt)
116
- response = tokenizer.batch_decode(generated_ids)[0]
117
  print(response)
118
  ```
119
 
@@ -160,7 +160,47 @@ Find more details in the [LMDeploy documentation](https://lmdeploy.readthedocs.i
160
 
161
  #### Ollama inference
162
 
163
- TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
  #### vLLM inference
166
 
@@ -168,7 +208,11 @@ We are still working on merging the PR(https://github.com/vllm-project/vllm/pull
168
 
169
  ```python
170
  git clone -b support-internlm3 https://github.com/RunningLeon/vllm.git
171
- pip install -e .
 
 
 
 
172
  ```
173
 
174
  inference code:
@@ -270,7 +314,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
270
  model_dir = "internlm/internlm3-8b-instruct"
271
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
272
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
273
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
274
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
275
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
276
  # pip install -U bitsandbytes
@@ -282,7 +326,7 @@ messages = [
282
  {"role": "system", "content": thinking_system_prompt},
283
  {"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
284
  ]
285
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
286
 
287
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
288
 
@@ -291,7 +335,7 @@ generated_ids = [
291
  ]
292
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
293
  print(prompt)
294
- response = tokenizer.batch_decode(generated_ids)[0]
295
  print(response)
296
  ```
297
  #### LMDeploy inference
@@ -321,14 +365,56 @@ print(response)
321
 
322
  #### Ollama inference
323
 
324
- TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
 
326
  #### vLLM inference
327
 
328
  We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
329
  ```python
330
  git clone https://github.com/RunningLeon/vllm.git
331
- pip install -e .
 
 
 
 
332
  ```
333
 
334
  inference code
@@ -438,7 +524,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
438
  model_dir = "internlm/internlm3-8b-instruct"
439
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
440
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
441
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
442
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
443
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
444
  # pip install -U bitsandbytes
@@ -453,7 +539,7 @@ messages = [
453
  {"role": "system", "content": system_prompt},
454
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
455
  ]
456
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
457
 
458
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
459
 
@@ -462,7 +548,7 @@ generated_ids = [
462
  ]
463
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
464
  print(prompt)
465
- response = tokenizer.batch_decode(generated_ids)[0]
466
  print(response)
467
  ```
468
 
@@ -510,7 +596,49 @@ curl http://localhost:23333/v1/chat/completions \
510
 
511
  ##### Ollama 推理
512
 
513
- TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514
 
515
  ##### vLLM 推理
516
 
@@ -518,7 +646,11 @@ TODO
518
 
519
  ```python
520
  git clone https://github.com/RunningLeon/vllm.git
521
- pip install -e .
 
 
 
 
522
  ```
523
 
524
  推理代码
@@ -619,7 +751,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
619
  model_dir = "internlm/internlm3-8b-instruct"
620
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
621
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
622
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
623
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
624
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
625
  # pip install -U bitsandbytes
@@ -631,7 +763,7 @@ messages = [
631
  {"role": "system", "content": thinking_system_prompt},
632
  {"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
633
  ]
634
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
635
 
636
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
637
 
@@ -640,7 +772,7 @@ generated_ids = [
640
  ]
641
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
642
  print(prompt)
643
- response = tokenizer.batch_decode(generated_ids)[0]
644
  print(response)
645
  ```
646
  ##### LMDeploy 推理
@@ -670,7 +802,45 @@ print(response)
670
 
671
  ##### Ollama 推理
672
 
673
- TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674
 
675
  ##### vLLM 推理
676
 
@@ -678,7 +848,11 @@ TODO
678
 
679
  ```python
680
  git clone https://github.com/RunningLeon/vllm.git
681
- pip install -e .
 
 
 
 
682
  ```
683
 
684
  推理代码
@@ -728,4 +902,4 @@ print(outputs)
728
  archivePrefix={arXiv},
729
  primaryClass={cs.CL}
730
  }
731
- ```
 
89
  model_dir = "internlm/internlm3-8b-instruct"
90
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
91
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
92
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
93
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
94
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
95
  # pip install -U bitsandbytes
 
104
  {"role": "system", "content": system_prompt},
105
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
106
  ]
107
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
108
 
109
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
110
 
 
113
  ]
114
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
115
  print(prompt)
116
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
117
  print(response)
118
  ```
119
 
 
160
 
161
  #### Ollama inference
162
 
163
+ First install ollama,
164
+
165
+ ```python
166
+ # install ollama
167
+ curl -fsSL https://ollama.com/install.sh | sh
168
+ # fetch model
169
+ ollama pull internlm/internlm3-8b-instruct
170
+ # install
171
+ pip install ollama
172
+ ```
173
+
174
+ inference code,
175
+
176
+ ```python
177
+ import ollama
178
+
179
+ system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
180
+ - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
181
+ - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
182
+
183
+ messages = [
184
+ {
185
+ "role": "system",
186
+ "content": system_prompt,
187
+ },
188
+ {
189
+ "role": "user",
190
+ "content": "Please tell me five scenic spots in Shanghai"
191
+ },
192
+ ]
193
+
194
+ stream = ollama.chat(
195
+ model='internlm/internlm3-8b-instruct',
196
+ messages=messages,
197
+ stream=True,
198
+ )
199
+
200
+ for chunk in stream:
201
+ print(chunk['message']['content'], end='', flush=True)
202
+ ```
203
+
204
 
205
  #### vLLM inference
206
 
 
208
 
209
  ```python
210
  git clone -b support-internlm3 https://github.com/RunningLeon/vllm.git
211
+ # and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
212
+ cd vllm
213
+ python use_existing_torch.py
214
+ pip install -r requirements-build.txt
215
+ pip install -e . --no-build-isolatio
216
  ```
217
 
218
  inference code:
 
314
  model_dir = "internlm/internlm3-8b-instruct"
315
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
316
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
317
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
318
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
319
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
320
  # pip install -U bitsandbytes
 
326
  {"role": "system", "content": thinking_system_prompt},
327
  {"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
328
  ]
329
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
330
 
331
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
332
 
 
335
  ]
336
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
337
  print(prompt)
338
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
339
  print(response)
340
  ```
341
  #### LMDeploy inference
 
365
 
366
  #### Ollama inference
367
 
368
+ First install ollama,
369
+
370
+ ```python
371
+ # install ollama
372
+ curl -fsSL https://ollama.com/install.sh | sh
373
+ # fetch model
374
+ ollama pull internlm/internlm3-8b-instruct
375
+ # install
376
+ pip install ollama
377
+ ```
378
+
379
+ inference code,
380
+
381
+ ```python
382
+ import ollama
383
+
384
+ messages = [
385
+ {
386
+ "role": "system",
387
+ "content": thinking_system_prompt,
388
+ },
389
+ {
390
+ "role": "user",
391
+ "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
392
+ },
393
+ ]
394
+
395
+ stream = ollama.chat(
396
+ model='internlm/internlm3-8b-instruct',
397
+ messages=messages,
398
+ stream=True,
399
+ )
400
+
401
+ for chunk in stream:
402
+ print(chunk['message']['content'], end='', flush=True)
403
+ ```
404
+
405
+
406
+ ####
407
 
408
  #### vLLM inference
409
 
410
  We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
411
  ```python
412
  git clone https://github.com/RunningLeon/vllm.git
413
+ # and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
414
+ cd vllm
415
+ python use_existing_torch.py
416
+ pip install -r requirements-build.txt
417
+ pip install -e . --no-build-isolatio
418
  ```
419
 
420
  inference code
 
524
  model_dir = "internlm/internlm3-8b-instruct"
525
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
526
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
527
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
528
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
529
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
530
  # pip install -U bitsandbytes
 
539
  {"role": "system", "content": system_prompt},
540
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
541
  ]
542
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
543
 
544
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
545
 
 
548
  ]
549
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
550
  print(prompt)
551
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
552
  print(response)
553
  ```
554
 
 
596
 
597
  ##### Ollama 推理
598
 
599
+ 准备工作
600
+
601
+ ```python
602
+ # install ollama
603
+ curl -fsSL https://ollama.com/install.sh | sh
604
+ # fetch 模型
605
+ ollama pull internlm/internlm3-8b-instruct
606
+ # install python库
607
+ pip install ollama
608
+ ```
609
+
610
+ 推理代码
611
+
612
+ ```python
613
+ import ollama
614
+
615
+ system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
616
+ - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
617
+ - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
618
+
619
+ messages = [
620
+ {
621
+ "role": "system",
622
+ "content": system_prompt,
623
+ },
624
+ {
625
+ "role": "user",
626
+ "content": "Please tell me five scenic spots in Shanghai"
627
+ },
628
+ ]
629
+
630
+ stream = ollama.chat(
631
+ model='internlm/internlm3-8b-instruct',
632
+ messages=messages,
633
+ stream=True,
634
+ )
635
+
636
+ for chunk in stream:
637
+ print(chunk['message']['content'], end='', flush=True)
638
+ ```
639
+
640
+
641
+ ####
642
 
643
  ##### vLLM 推理
644
 
 
646
 
647
  ```python
648
  git clone https://github.com/RunningLeon/vllm.git
649
+ # and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
650
+ cd vllm
651
+ python use_existing_torch.py
652
+ pip install -r requirements-build.txt
653
+ pip install -e . --no-build-isolatio
654
  ```
655
 
656
  推理代码
 
751
  model_dir = "internlm/internlm3-8b-instruct"
752
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
753
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
754
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
755
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
756
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
757
  # pip install -U bitsandbytes
 
763
  {"role": "system", "content": thinking_system_prompt},
764
  {"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
765
  ]
766
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
767
 
768
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
769
 
 
772
  ]
773
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
774
  print(prompt)
775
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
776
  print(response)
777
  ```
778
  ##### LMDeploy 推理
 
802
 
803
  ##### Ollama 推理
804
 
805
+ 准备工作
806
+
807
+ ```python
808
+ # install ollama
809
+ curl -fsSL https://ollama.com/install.sh | sh
810
+ # fetch 模型
811
+ ollama pull internlm/internlm3-8b-instruct
812
+ # install python库
813
+ pip install ollama
814
+ ```
815
+
816
+ inference code,
817
+
818
+ ```python
819
+ import ollama
820
+
821
+ messages = [
822
+ {
823
+ "role": "system",
824
+ "content": thinking_system_prompt,
825
+ },
826
+ {
827
+ "role": "user",
828
+ "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
829
+ },
830
+ ]
831
+
832
+ stream = ollama.chat(
833
+ model='internlm/internlm3-8b-instruct',
834
+ messages=messages,
835
+ stream=True,
836
+ )
837
+
838
+ for chunk in stream:
839
+ print(chunk['message']['content'], end='', flush=True)
840
+ ```
841
+
842
+
843
+ ####
844
 
845
  ##### vLLM 推理
846
 
 
848
 
849
  ```python
850
  git clone https://github.com/RunningLeon/vllm.git
851
+ # and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
852
+ cd vllm
853
+ python use_existing_torch.py
854
+ pip install -r requirements-build.txt
855
+ pip install -e . --no-build-isolatio
856
  ```
857
 
858
  推理代码
 
902
  archivePrefix={arXiv},
903
  primaryClass={cs.CL}
904
  }
905
+ ```