test
#4
by
haijunlv
- opened
- LICENSE.txt +0 -201
- README.md +70 -231
- model-00001-of-00002.safetensors → model-00001-of-00004.safetensors +2 -2
- model-00002-of-00002.safetensors → model-00002-of-00004.safetensors +2 -2
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +436 -436
LICENSE.txt
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
Apache License
|
2 |
-
Version 2.0, January 2004
|
3 |
-
http://www.apache.org/licenses/
|
4 |
-
|
5 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
-
|
7 |
-
1. Definitions.
|
8 |
-
|
9 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
-
|
12 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
-
the copyright owner that is granting the License.
|
14 |
-
|
15 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
-
other entities that control, are controlled by, or are under common
|
17 |
-
control with that entity. For the purposes of this definition,
|
18 |
-
"control" means (i) the power, direct or indirect, to cause the
|
19 |
-
direction or management of such entity, whether by contract or
|
20 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
-
|
23 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
-
exercising permissions granted by this License.
|
25 |
-
|
26 |
-
"Source" form shall mean the preferred form for making modifications,
|
27 |
-
including but not limited to software source code, documentation
|
28 |
-
source, and configuration files.
|
29 |
-
|
30 |
-
"Object" form shall mean any form resulting from mechanical
|
31 |
-
transformation or translation of a Source form, including but
|
32 |
-
not limited to compiled object code, generated documentation,
|
33 |
-
and conversions to other media types.
|
34 |
-
|
35 |
-
"Work" shall mean the work of authorship, whether in Source or
|
36 |
-
Object form, made available under the License, as indicated by a
|
37 |
-
copyright notice that is included in or attached to the work
|
38 |
-
(an example is provided in the Appendix below).
|
39 |
-
|
40 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
-
form, that is based on (or derived from) the Work and for which the
|
42 |
-
editorial revisions, annotations, elaborations, or other modifications
|
43 |
-
represent, as a whole, an original work of authorship. For the purposes
|
44 |
-
of this License, Derivative Works shall not include works that remain
|
45 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
-
the Work and Derivative Works thereof.
|
47 |
-
|
48 |
-
"Contribution" shall mean any work of authorship, including
|
49 |
-
the original version of the Work and any modifications or additions
|
50 |
-
to that Work or Derivative Works thereof, that is intentionally
|
51 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
-
means any form of electronic, verbal, or written communication sent
|
55 |
-
to the Licensor or its representatives, including but not limited to
|
56 |
-
communication on electronic mailing lists, source code control systems,
|
57 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
-
Licensor for the purpose of discussing and improving the Work, but
|
59 |
-
excluding communication that is conspicuously marked or otherwise
|
60 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
-
|
62 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
-
on behalf of whom a Contribution has been received by Licensor and
|
64 |
-
subsequently incorporated within the Work.
|
65 |
-
|
66 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
-
this License, each Contributor hereby grants to You a perpetual,
|
68 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
-
copyright license to reproduce, prepare Derivative Works of,
|
70 |
-
publicly display, publicly perform, sublicense, and distribute the
|
71 |
-
Work and such Derivative Works in Source or Object form.
|
72 |
-
|
73 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
-
this License, each Contributor hereby grants to You a perpetual,
|
75 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
-
(except as stated in this section) patent license to make, have made,
|
77 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
-
where such license applies only to those patent claims licensable
|
79 |
-
by such Contributor that are necessarily infringed by their
|
80 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
-
with the Work to which such Contribution(s) was submitted. If You
|
82 |
-
institute patent litigation against any entity (including a
|
83 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
-
or a Contribution incorporated within the Work constitutes direct
|
85 |
-
or contributory patent infringement, then any patent licenses
|
86 |
-
granted to You under this License for that Work shall terminate
|
87 |
-
as of the date such litigation is filed.
|
88 |
-
|
89 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
-
Work or Derivative Works thereof in any medium, with or without
|
91 |
-
modifications, and in Source or Object form, provided that You
|
92 |
-
meet the following conditions:
|
93 |
-
|
94 |
-
(a) You must give any other recipients of the Work or
|
95 |
-
Derivative Works a copy of this License; and
|
96 |
-
|
97 |
-
(b) You must cause any modified files to carry prominent notices
|
98 |
-
stating that You changed the files; and
|
99 |
-
|
100 |
-
(c) You must retain, in the Source form of any Derivative Works
|
101 |
-
that You distribute, all copyright, patent, trademark, and
|
102 |
-
attribution notices from the Source form of the Work,
|
103 |
-
excluding those notices that do not pertain to any part of
|
104 |
-
the Derivative Works; and
|
105 |
-
|
106 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
-
distribution, then any Derivative Works that You distribute must
|
108 |
-
include a readable copy of the attribution notices contained
|
109 |
-
within such NOTICE file, excluding those notices that do not
|
110 |
-
pertain to any part of the Derivative Works, in at least one
|
111 |
-
of the following places: within a NOTICE text file distributed
|
112 |
-
as part of the Derivative Works; within the Source form or
|
113 |
-
documentation, if provided along with the Derivative Works; or,
|
114 |
-
within a display generated by the Derivative Works, if and
|
115 |
-
wherever such third-party notices normally appear. The contents
|
116 |
-
of the NOTICE file are for informational purposes only and
|
117 |
-
do not modify the License. You may add Your own attribution
|
118 |
-
notices within Derivative Works that You distribute, alongside
|
119 |
-
or as an addendum to the NOTICE text from the Work, provided
|
120 |
-
that such additional attribution notices cannot be construed
|
121 |
-
as modifying the License.
|
122 |
-
|
123 |
-
You may add Your own copyright statement to Your modifications and
|
124 |
-
may provide additional or different license terms and conditions
|
125 |
-
for use, reproduction, or distribution of Your modifications, or
|
126 |
-
for any such Derivative Works as a whole, provided Your use,
|
127 |
-
reproduction, and distribution of the Work otherwise complies with
|
128 |
-
the conditions stated in this License.
|
129 |
-
|
130 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
-
any Contribution intentionally submitted for inclusion in the Work
|
132 |
-
by You to the Licensor shall be under the terms and conditions of
|
133 |
-
this License, without any additional terms or conditions.
|
134 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
-
the terms of any separate license agreement you may have executed
|
136 |
-
with Licensor regarding such Contributions.
|
137 |
-
|
138 |
-
6. Trademarks. This License does not grant permission to use the trade
|
139 |
-
names, trademarks, service marks, or product names of the Licensor,
|
140 |
-
except as required for reasonable and customary use in describing the
|
141 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
-
|
143 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
-
agreed to in writing, Licensor provides the Work (and each
|
145 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
-
implied, including, without limitation, any warranties or conditions
|
148 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
-
appropriateness of using or redistributing the Work and assume any
|
151 |
-
risks associated with Your exercise of permissions under this License.
|
152 |
-
|
153 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
-
whether in tort (including negligence), contract, or otherwise,
|
155 |
-
unless required by applicable law (such as deliberate and grossly
|
156 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
-
liable to You for damages, including any direct, indirect, special,
|
158 |
-
incidental, or consequential damages of any character arising as a
|
159 |
-
result of this License or out of the use or inability to use the
|
160 |
-
Work (including but not limited to damages for loss of goodwill,
|
161 |
-
work stoppage, computer failure or malfunction, or any and all
|
162 |
-
other commercial damages or losses), even if such Contributor
|
163 |
-
has been advised of the possibility of such damages.
|
164 |
-
|
165 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
-
or other liability obligations and/or rights consistent with this
|
169 |
-
License. However, in accepting such obligations, You may act only
|
170 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
-
of any other Contributor, and only if You agree to indemnify,
|
172 |
-
defend, and hold each Contributor harmless for any liability
|
173 |
-
incurred by, or claims asserted against, such Contributor by reason
|
174 |
-
of your accepting any such warranty or additional liability.
|
175 |
-
|
176 |
-
END OF TERMS AND CONDITIONS
|
177 |
-
|
178 |
-
APPENDIX: How to apply the Apache License to your work.
|
179 |
-
|
180 |
-
To apply the Apache License to your work, attach the following
|
181 |
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
-
replaced with your own identifying information. (Don't include
|
183 |
-
the brackets!) The text should be enclosed in the appropriate
|
184 |
-
comment syntax for the file format. We also recommend that a
|
185 |
-
file or class name and description of purpose be included on the
|
186 |
-
same "printed page" as the copyright notice for easier
|
187 |
-
identification within third-party archives.
|
188 |
-
|
189 |
-
Copyright 2023-2024 Shanghai AI Laboratory
|
190 |
-
|
191 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
-
you may not use this file except in compliance with the License.
|
193 |
-
You may obtain a copy of the License at
|
194 |
-
|
195 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
-
|
197 |
-
Unless required by applicable law or agreed to in writing, software
|
198 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
-
See the License for the specific language governing permissions and
|
201 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,7 +1,3 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
pipeline_tag: text-generation
|
4 |
-
---
|
5 |
# InternLM
|
6 |
|
7 |
|
@@ -23,7 +19,7 @@ pipeline_tag: text-generation
|
|
23 |
|
24 |
[![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
|
25 |
|
26 |
-
[💻Github Repo](https://github.com/InternLM/InternLM) • [
|
27 |
|
28 |
</div>
|
29 |
|
@@ -48,26 +44,25 @@ InternLM3 supports both the deep thinking mode for solving complicated reasoning
|
|
48 |
|
49 |
We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://rank.opencompass.org.cn) for more evaluation results.
|
50 |
|
51 |
-
|
|
52 |
-
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- |
|
53 |
-
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0
|
54 |
-
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7
|
55 |
-
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1
|
56 |
-
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9
|
57 |
-
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2
|
58 |
-
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5
|
59 |
-
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2
|
60 |
-
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0
|
61 |
-
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3
|
62 |
-
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8
|
63 |
-
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6
|
64 |
-
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7
|
65 |
-
| Long Context | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7
|
66 |
-
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7
|
67 |
-
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3
|
68 |
-
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87
|
69 |
-
|
70 |
-
- Values marked in bold indicate the **highest** in open source models
|
71 |
- The evaluation results were obtained from [OpenCompass](https://github.com/internLM/OpenCompass/) (some data marked with *, which means evaluating with Thinking Mode), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
|
72 |
- The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
|
73 |
|
@@ -91,7 +86,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
91 |
model_dir = "internlm/internlm3-8b-instruct"
|
92 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
93 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
94 |
-
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.
|
95 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
96 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
97 |
# pip install -U bitsandbytes
|
@@ -106,7 +101,7 @@ messages = [
|
|
106 |
{"role": "system", "content": system_prompt},
|
107 |
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
|
108 |
]
|
109 |
-
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
110 |
|
111 |
generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
|
112 |
|
@@ -115,7 +110,7 @@ generated_ids = [
|
|
115 |
]
|
116 |
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
117 |
print(prompt)
|
118 |
-
response = tokenizer.batch_decode(generated_ids
|
119 |
print(response)
|
120 |
```
|
121 |
|
@@ -162,54 +157,15 @@ Find more details in the [LMDeploy documentation](https://lmdeploy.readthedocs.i
|
|
162 |
|
163 |
#### Ollama inference
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
```python
|
168 |
-
# install ollama
|
169 |
-
curl -fsSL https://ollama.com/install.sh | sh
|
170 |
-
# fetch model
|
171 |
-
ollama pull internlm/internlm3-8b-instruct
|
172 |
-
# install
|
173 |
-
pip install ollama
|
174 |
-
```
|
175 |
-
|
176 |
-
inference code,
|
177 |
-
|
178 |
-
```python
|
179 |
-
import ollama
|
180 |
-
|
181 |
-
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
|
182 |
-
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
|
183 |
-
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
|
184 |
-
|
185 |
-
messages = [
|
186 |
-
{
|
187 |
-
"role": "system",
|
188 |
-
"content": system_prompt,
|
189 |
-
},
|
190 |
-
{
|
191 |
-
"role": "user",
|
192 |
-
"content": "Please tell me five scenic spots in Shanghai"
|
193 |
-
},
|
194 |
-
]
|
195 |
-
|
196 |
-
stream = ollama.chat(
|
197 |
-
model='internlm/internlm3-8b-instruct',
|
198 |
-
messages=messages,
|
199 |
-
stream=True,
|
200 |
-
)
|
201 |
-
|
202 |
-
for chunk in stream:
|
203 |
-
print(chunk['message']['content'], end='', flush=True)
|
204 |
-
```
|
205 |
-
|
206 |
|
207 |
#### vLLM inference
|
208 |
|
209 |
-
|
210 |
|
211 |
```python
|
212 |
-
|
|
|
213 |
```
|
214 |
|
215 |
inference code:
|
@@ -311,7 +267,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
311 |
model_dir = "internlm/internlm3-8b-instruct"
|
312 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
313 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
314 |
-
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.
|
315 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
316 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
317 |
# pip install -U bitsandbytes
|
@@ -323,7 +279,7 @@ messages = [
|
|
323 |
{"role": "system", "content": thinking_system_prompt},
|
324 |
{"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
|
325 |
]
|
326 |
-
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
327 |
|
328 |
generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
|
329 |
|
@@ -332,7 +288,7 @@ generated_ids = [
|
|
332 |
]
|
333 |
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
334 |
print(prompt)
|
335 |
-
response = tokenizer.batch_decode(generated_ids
|
336 |
print(response)
|
337 |
```
|
338 |
#### LMDeploy inference
|
@@ -362,52 +318,14 @@ print(response)
|
|
362 |
|
363 |
#### Ollama inference
|
364 |
|
365 |
-
|
366 |
-
|
367 |
-
```python
|
368 |
-
# install ollama
|
369 |
-
curl -fsSL https://ollama.com/install.sh | sh
|
370 |
-
# fetch model
|
371 |
-
ollama pull internlm/internlm3-8b-instruct
|
372 |
-
# install
|
373 |
-
pip install ollama
|
374 |
-
```
|
375 |
-
|
376 |
-
inference code,
|
377 |
-
|
378 |
-
```python
|
379 |
-
import ollama
|
380 |
-
|
381 |
-
messages = [
|
382 |
-
{
|
383 |
-
"role": "system",
|
384 |
-
"content": thinking_system_prompt,
|
385 |
-
},
|
386 |
-
{
|
387 |
-
"role": "user",
|
388 |
-
"content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
|
389 |
-
},
|
390 |
-
]
|
391 |
-
|
392 |
-
stream = ollama.chat(
|
393 |
-
model='internlm/internlm3-8b-instruct',
|
394 |
-
messages=messages,
|
395 |
-
stream=True,
|
396 |
-
)
|
397 |
-
|
398 |
-
for chunk in stream:
|
399 |
-
print(chunk['message']['content'], end='', flush=True)
|
400 |
-
```
|
401 |
-
|
402 |
-
|
403 |
-
####
|
404 |
|
405 |
#### vLLM inference
|
406 |
|
407 |
-
|
408 |
-
|
409 |
```python
|
410 |
-
|
|
|
411 |
```
|
412 |
|
413 |
inference code
|
@@ -471,26 +389,25 @@ InternLM3支持通过长思维链求解复杂推理任务的深度思考模式
|
|
471 |
|
472 |
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。
|
473 |
|
474 |
-
|
|
475 |
-
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- |
|
476 |
-
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0
|
477 |
-
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7
|
478 |
-
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1
|
479 |
-
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9
|
480 |
-
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2
|
481 |
-
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5
|
482 |
-
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2
|
483 |
-
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0
|
484 |
-
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3
|
485 |
-
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8
|
486 |
-
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6
|
487 |
-
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7
|
488 |
-
| LongContext | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7
|
489 |
-
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7
|
490 |
-
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3
|
491 |
-
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87
|
492 |
-
|
493 |
-
- 表中标粗的数值表示在对比的开源模型中的最高值。
|
494 |
- 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表使用深度思考模式进行评测),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
|
495 |
- 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
|
496 |
|
@@ -518,7 +435,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
518 |
model_dir = "internlm/internlm3-8b-instruct"
|
519 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
520 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
521 |
-
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.
|
522 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
523 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
524 |
# pip install -U bitsandbytes
|
@@ -533,7 +450,7 @@ messages = [
|
|
533 |
{"role": "system", "content": system_prompt},
|
534 |
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
|
535 |
]
|
536 |
-
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
537 |
|
538 |
generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
|
539 |
|
@@ -542,7 +459,7 @@ generated_ids = [
|
|
542 |
]
|
543 |
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
544 |
print(prompt)
|
545 |
-
response = tokenizer.batch_decode(generated_ids
|
546 |
print(response)
|
547 |
```
|
548 |
|
@@ -590,56 +507,15 @@ curl http://localhost:23333/v1/chat/completions \
|
|
590 |
|
591 |
##### Ollama 推理
|
592 |
|
593 |
-
|
594 |
-
|
595 |
-
```python
|
596 |
-
# install ollama
|
597 |
-
curl -fsSL https://ollama.com/install.sh | sh
|
598 |
-
# fetch 模型
|
599 |
-
ollama pull internlm/internlm3-8b-instruct
|
600 |
-
# install python库
|
601 |
-
pip install ollama
|
602 |
-
```
|
603 |
-
|
604 |
-
推理代码
|
605 |
-
|
606 |
-
```python
|
607 |
-
import ollama
|
608 |
-
|
609 |
-
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
|
610 |
-
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
|
611 |
-
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
|
612 |
-
|
613 |
-
messages = [
|
614 |
-
{
|
615 |
-
"role": "system",
|
616 |
-
"content": system_prompt,
|
617 |
-
},
|
618 |
-
{
|
619 |
-
"role": "user",
|
620 |
-
"content": "Please tell me five scenic spots in Shanghai"
|
621 |
-
},
|
622 |
-
]
|
623 |
-
|
624 |
-
stream = ollama.chat(
|
625 |
-
model='internlm/internlm3-8b-instruct',
|
626 |
-
messages=messages,
|
627 |
-
stream=True,
|
628 |
-
)
|
629 |
-
|
630 |
-
for chunk in stream:
|
631 |
-
print(chunk['message']['content'], end='', flush=True)
|
632 |
-
```
|
633 |
-
|
634 |
-
|
635 |
-
####
|
636 |
|
637 |
##### vLLM 推理
|
638 |
|
639 |
-
|
640 |
|
641 |
-
```
|
642 |
-
|
|
|
643 |
```
|
644 |
|
645 |
推理代码
|
@@ -740,7 +616,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
740 |
model_dir = "internlm/internlm3-8b-instruct"
|
741 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
742 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
743 |
-
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.
|
744 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
745 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
746 |
# pip install -U bitsandbytes
|
@@ -752,7 +628,7 @@ messages = [
|
|
752 |
{"role": "system", "content": thinking_system_prompt},
|
753 |
{"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
|
754 |
]
|
755 |
-
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
756 |
|
757 |
generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
|
758 |
|
@@ -761,7 +637,7 @@ generated_ids = [
|
|
761 |
]
|
762 |
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
763 |
print(prompt)
|
764 |
-
response = tokenizer.batch_decode(generated_ids
|
765 |
print(response)
|
766 |
```
|
767 |
##### LMDeploy 推理
|
@@ -791,52 +667,15 @@ print(response)
|
|
791 |
|
792 |
##### Ollama 推理
|
793 |
|
794 |
-
|
795 |
-
|
796 |
-
```python
|
797 |
-
# install ollama
|
798 |
-
curl -fsSL https://ollama.com/install.sh | sh
|
799 |
-
# fetch 模型
|
800 |
-
ollama pull internlm/internlm3-8b-instruct
|
801 |
-
# install python库
|
802 |
-
pip install ollama
|
803 |
-
```
|
804 |
-
|
805 |
-
inference code,
|
806 |
-
|
807 |
-
```python
|
808 |
-
import ollama
|
809 |
-
|
810 |
-
messages = [
|
811 |
-
{
|
812 |
-
"role": "system",
|
813 |
-
"content": thinking_system_prompt,
|
814 |
-
},
|
815 |
-
{
|
816 |
-
"role": "user",
|
817 |
-
"content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
|
818 |
-
},
|
819 |
-
]
|
820 |
-
|
821 |
-
stream = ollama.chat(
|
822 |
-
model='internlm/internlm3-8b-instruct',
|
823 |
-
messages=messages,
|
824 |
-
stream=True,
|
825 |
-
)
|
826 |
-
|
827 |
-
for chunk in stream:
|
828 |
-
print(chunk['message']['content'], end='', flush=True)
|
829 |
-
```
|
830 |
-
|
831 |
-
|
832 |
-
####
|
833 |
|
834 |
##### vLLM 推理
|
835 |
|
836 |
-
|
837 |
|
838 |
-
```
|
839 |
-
|
|
|
840 |
```
|
841 |
|
842 |
推理代码
|
@@ -886,4 +725,4 @@ print(outputs)
|
|
886 |
archivePrefix={arXiv},
|
887 |
primaryClass={cs.CL}
|
888 |
}
|
889 |
-
```
|
|
|
|
|
|
|
|
|
|
|
1 |
# InternLM
|
2 |
|
3 |
|
|
|
19 |
|
20 |
[![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
|
21 |
|
22 |
+
[💻Github Repo](https://github.com/InternLM/InternLM) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new) • [📜Technical Report](https://arxiv.org/abs/2403.17297)
|
23 |
|
24 |
</div>
|
25 |
|
|
|
44 |
|
45 |
We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://rank.opencompass.org.cn) for more evaluation results.
|
46 |
|
47 |
+
| Benchmark | | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(close source) |
|
48 |
+
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ------------------------- |
|
49 |
+
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
|
50 |
+
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
|
51 |
+
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
|
52 |
+
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
|
53 |
+
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
|
54 |
+
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
|
55 |
+
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
|
56 |
+
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
|
57 |
+
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
|
58 |
+
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
|
59 |
+
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
|
60 |
+
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
|
61 |
+
| Long Context | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
|
62 |
+
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
|
63 |
+
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
|
64 |
+
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
|
65 |
+
|
|
|
66 |
- The evaluation results were obtained from [OpenCompass](https://github.com/internLM/OpenCompass/) (some data marked with *, which means evaluating with Thinking Mode), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
|
67 |
- The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
|
68 |
|
|
|
86 |
model_dir = "internlm/internlm3-8b-instruct"
|
87 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
88 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
89 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
|
90 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
91 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
92 |
# pip install -U bitsandbytes
|
|
|
101 |
{"role": "system", "content": system_prompt},
|
102 |
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
|
103 |
]
|
104 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
105 |
|
106 |
generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
|
107 |
|
|
|
110 |
]
|
111 |
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
112 |
print(prompt)
|
113 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
114 |
print(response)
|
115 |
```
|
116 |
|
|
|
157 |
|
158 |
#### Ollama inference
|
159 |
|
160 |
+
TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
#### vLLM inference
|
163 |
|
164 |
+
We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
|
165 |
|
166 |
```python
|
167 |
+
git clone -b support-internlm3 https://github.com/RunningLeon/vllm.git
|
168 |
+
pip install -e .
|
169 |
```
|
170 |
|
171 |
inference code:
|
|
|
267 |
model_dir = "internlm/internlm3-8b-instruct"
|
268 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
269 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
270 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
|
271 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
272 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
273 |
# pip install -U bitsandbytes
|
|
|
279 |
{"role": "system", "content": thinking_system_prompt},
|
280 |
{"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
|
281 |
]
|
282 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
283 |
|
284 |
generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
|
285 |
|
|
|
288 |
]
|
289 |
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
290 |
print(prompt)
|
291 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
292 |
print(response)
|
293 |
```
|
294 |
#### LMDeploy inference
|
|
|
318 |
|
319 |
#### Ollama inference
|
320 |
|
321 |
+
TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
#### vLLM inference
|
324 |
|
325 |
+
We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
|
|
|
326 |
```python
|
327 |
+
git clone https://github.com/RunningLeon/vllm.git
|
328 |
+
pip install -e .
|
329 |
```
|
330 |
|
331 |
inference code
|
|
|
389 |
|
390 |
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。
|
391 |
|
392 |
+
| 评测集\模型 | | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(close source) |
|
393 |
+
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ------------------------- |
|
394 |
+
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
|
395 |
+
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
|
396 |
+
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
|
397 |
+
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
|
398 |
+
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
|
399 |
+
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
|
400 |
+
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
|
401 |
+
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
|
402 |
+
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
|
403 |
+
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
|
404 |
+
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
|
405 |
+
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
|
406 |
+
| LongContext | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
|
407 |
+
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
|
408 |
+
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
|
409 |
+
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
|
410 |
+
|
|
|
411 |
- 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表使用深度思考模式进行评测),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
|
412 |
- 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
|
413 |
|
|
|
435 |
model_dir = "internlm/internlm3-8b-instruct"
|
436 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
437 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
438 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
|
439 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
440 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
441 |
# pip install -U bitsandbytes
|
|
|
450 |
{"role": "system", "content": system_prompt},
|
451 |
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
|
452 |
]
|
453 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
454 |
|
455 |
generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
|
456 |
|
|
|
459 |
]
|
460 |
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
461 |
print(prompt)
|
462 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
463 |
print(response)
|
464 |
```
|
465 |
|
|
|
507 |
|
508 |
##### Ollama 推理
|
509 |
|
510 |
+
TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
|
512 |
##### vLLM 推理
|
513 |
|
514 |
+
我们还在推动PR(https://github.com/vllm-project/vllm/pull/12037) 合入vllm,现在请使用以下PR链接手动安装
|
515 |
|
516 |
+
```python
|
517 |
+
git clone https://github.com/RunningLeon/vllm.git
|
518 |
+
pip install -e .
|
519 |
```
|
520 |
|
521 |
推理代码
|
|
|
616 |
model_dir = "internlm/internlm3-8b-instruct"
|
617 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
618 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
619 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
|
620 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
621 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
622 |
# pip install -U bitsandbytes
|
|
|
628 |
{"role": "system", "content": thinking_system_prompt},
|
629 |
{"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
|
630 |
]
|
631 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
632 |
|
633 |
generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
|
634 |
|
|
|
637 |
]
|
638 |
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
639 |
print(prompt)
|
640 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
641 |
print(response)
|
642 |
```
|
643 |
##### LMDeploy 推理
|
|
|
667 |
|
668 |
##### Ollama 推理
|
669 |
|
670 |
+
TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
671 |
|
672 |
##### vLLM 推理
|
673 |
|
674 |
+
我们还在推动PR(https://github.com/vllm-project/vllm/pull/12037) 合入vllm,现在请使用以下PR链接手动安装
|
675 |
|
676 |
+
```python
|
677 |
+
git clone https://github.com/RunningLeon/vllm.git
|
678 |
+
pip install -e .
|
679 |
```
|
680 |
|
681 |
推理代码
|
|
|
725 |
archivePrefix={arXiv},
|
726 |
primaryClass={cs.CL}
|
727 |
}
|
728 |
+
```
|
model-00001-of-00002.safetensors → model-00001-of-00004.safetensors
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8a1b8c2aecbe72356241a5b5e861ba029f4e61189c4c0a9ca9821e66679f6f5
|
3 |
+
size 9999626944
|
model-00002-of-00002.safetensors → model-00002-of-00004.safetensors
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7eefc1671b07fe3aefb5011f381eb4524c27595cab06e56fbeac256ebe24b18d
|
3 |
+
size 9857121648
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:536775814f5fd4327c11ae5dcdab5f537ab733aae90df9ef425ea06984802fe5
|
3 |
+
size 9857121632
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6b47cfd723371ff07d585cc48355c16f15b03a48281f7933ecf339a299d64b3
|
3 |
+
size 5503145608
|
model.safetensors.index.json
CHANGED
@@ -1,442 +1,442 @@
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
-
"total_size":
|
4 |
},
|
5 |
"weight_map": {
|
6 |
-
"lm_head.weight": "model-
|
7 |
-
"model.embed_tokens.weight": "model-00001-of-
|
8 |
-
"model.layers.0.input_layernorm.weight": "model-00001-of-
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "model-00001-of-
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "model-00001-of-
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-
|
13 |
-
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-
|
14 |
-
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-
|
15 |
-
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-
|
16 |
-
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-
|
17 |
-
"model.layers.1.input_layernorm.weight": "model-00001-of-
|
18 |
-
"model.layers.1.mlp.down_proj.weight": "model-00001-of-
|
19 |
-
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-
|
20 |
-
"model.layers.1.mlp.up_proj.weight": "model-00001-of-
|
21 |
-
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-
|
22 |
-
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-
|
23 |
-
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-
|
24 |
-
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-
|
25 |
-
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-
|
26 |
-
"model.layers.10.input_layernorm.weight": "model-00001-of-
|
27 |
-
"model.layers.10.mlp.down_proj.weight": "model-00001-of-
|
28 |
-
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-
|
29 |
-
"model.layers.10.mlp.up_proj.weight": "model-00001-of-
|
30 |
-
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-
|
31 |
-
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-
|
32 |
-
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-
|
33 |
-
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-
|
34 |
-
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-
|
35 |
-
"model.layers.11.input_layernorm.weight": "model-00001-of-
|
36 |
-
"model.layers.11.mlp.down_proj.weight": "model-00001-of-
|
37 |
-
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-
|
38 |
-
"model.layers.11.mlp.up_proj.weight": "model-00001-of-
|
39 |
-
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-
|
40 |
-
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-
|
41 |
-
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-
|
42 |
-
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-
|
43 |
-
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-
|
44 |
-
"model.layers.12.input_layernorm.weight": "model-
|
45 |
-
"model.layers.12.mlp.down_proj.weight": "model-
|
46 |
-
"model.layers.12.mlp.gate_proj.weight": "model-
|
47 |
-
"model.layers.12.mlp.up_proj.weight": "model-
|
48 |
-
"model.layers.12.post_attention_layernorm.weight": "model-
|
49 |
-
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-
|
50 |
-
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-
|
51 |
-
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-
|
52 |
-
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-
|
53 |
-
"model.layers.13.input_layernorm.weight": "model-
|
54 |
-
"model.layers.13.mlp.down_proj.weight": "model-
|
55 |
-
"model.layers.13.mlp.gate_proj.weight": "model-
|
56 |
-
"model.layers.13.mlp.up_proj.weight": "model-
|
57 |
-
"model.layers.13.post_attention_layernorm.weight": "model-
|
58 |
-
"model.layers.13.self_attn.k_proj.weight": "model-
|
59 |
-
"model.layers.13.self_attn.o_proj.weight": "model-
|
60 |
-
"model.layers.13.self_attn.q_proj.weight": "model-
|
61 |
-
"model.layers.13.self_attn.v_proj.weight": "model-
|
62 |
-
"model.layers.14.input_layernorm.weight": "model-
|
63 |
-
"model.layers.14.mlp.down_proj.weight": "model-
|
64 |
-
"model.layers.14.mlp.gate_proj.weight": "model-
|
65 |
-
"model.layers.14.mlp.up_proj.weight": "model-
|
66 |
-
"model.layers.14.post_attention_layernorm.weight": "model-
|
67 |
-
"model.layers.14.self_attn.k_proj.weight": "model-
|
68 |
-
"model.layers.14.self_attn.o_proj.weight": "model-
|
69 |
-
"model.layers.14.self_attn.q_proj.weight": "model-
|
70 |
-
"model.layers.14.self_attn.v_proj.weight": "model-
|
71 |
-
"model.layers.15.input_layernorm.weight": "model-
|
72 |
-
"model.layers.15.mlp.down_proj.weight": "model-
|
73 |
-
"model.layers.15.mlp.gate_proj.weight": "model-
|
74 |
-
"model.layers.15.mlp.up_proj.weight": "model-
|
75 |
-
"model.layers.15.post_attention_layernorm.weight": "model-
|
76 |
-
"model.layers.15.self_attn.k_proj.weight": "model-
|
77 |
-
"model.layers.15.self_attn.o_proj.weight": "model-
|
78 |
-
"model.layers.15.self_attn.q_proj.weight": "model-
|
79 |
-
"model.layers.15.self_attn.v_proj.weight": "model-
|
80 |
-
"model.layers.16.input_layernorm.weight": "model-
|
81 |
-
"model.layers.16.mlp.down_proj.weight": "model-
|
82 |
-
"model.layers.16.mlp.gate_proj.weight": "model-
|
83 |
-
"model.layers.16.mlp.up_proj.weight": "model-
|
84 |
-
"model.layers.16.post_attention_layernorm.weight": "model-
|
85 |
-
"model.layers.16.self_attn.k_proj.weight": "model-
|
86 |
-
"model.layers.16.self_attn.o_proj.weight": "model-
|
87 |
-
"model.layers.16.self_attn.q_proj.weight": "model-
|
88 |
-
"model.layers.16.self_attn.v_proj.weight": "model-
|
89 |
-
"model.layers.17.input_layernorm.weight": "model-
|
90 |
-
"model.layers.17.mlp.down_proj.weight": "model-
|
91 |
-
"model.layers.17.mlp.gate_proj.weight": "model-
|
92 |
-
"model.layers.17.mlp.up_proj.weight": "model-
|
93 |
-
"model.layers.17.post_attention_layernorm.weight": "model-
|
94 |
-
"model.layers.17.self_attn.k_proj.weight": "model-
|
95 |
-
"model.layers.17.self_attn.o_proj.weight": "model-
|
96 |
-
"model.layers.17.self_attn.q_proj.weight": "model-
|
97 |
-
"model.layers.17.self_attn.v_proj.weight": "model-
|
98 |
-
"model.layers.18.input_layernorm.weight": "model-
|
99 |
-
"model.layers.18.mlp.down_proj.weight": "model-
|
100 |
-
"model.layers.18.mlp.gate_proj.weight": "model-
|
101 |
-
"model.layers.18.mlp.up_proj.weight": "model-
|
102 |
-
"model.layers.18.post_attention_layernorm.weight": "model-
|
103 |
-
"model.layers.18.self_attn.k_proj.weight": "model-
|
104 |
-
"model.layers.18.self_attn.o_proj.weight": "model-
|
105 |
-
"model.layers.18.self_attn.q_proj.weight": "model-
|
106 |
-
"model.layers.18.self_attn.v_proj.weight": "model-
|
107 |
-
"model.layers.19.input_layernorm.weight": "model-
|
108 |
-
"model.layers.19.mlp.down_proj.weight": "model-
|
109 |
-
"model.layers.19.mlp.gate_proj.weight": "model-
|
110 |
-
"model.layers.19.mlp.up_proj.weight": "model-
|
111 |
-
"model.layers.19.post_attention_layernorm.weight": "model-
|
112 |
-
"model.layers.19.self_attn.k_proj.weight": "model-
|
113 |
-
"model.layers.19.self_attn.o_proj.weight": "model-
|
114 |
-
"model.layers.19.self_attn.q_proj.weight": "model-
|
115 |
-
"model.layers.19.self_attn.v_proj.weight": "model-
|
116 |
-
"model.layers.2.input_layernorm.weight": "model-00001-of-
|
117 |
-
"model.layers.2.mlp.down_proj.weight": "model-00001-of-
|
118 |
-
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-
|
119 |
-
"model.layers.2.mlp.up_proj.weight": "model-00001-of-
|
120 |
-
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-
|
121 |
-
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-
|
122 |
-
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-
|
123 |
-
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-
|
124 |
-
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-
|
125 |
-
"model.layers.20.input_layernorm.weight": "model-
|
126 |
-
"model.layers.20.mlp.down_proj.weight": "model-
|
127 |
-
"model.layers.20.mlp.gate_proj.weight": "model-
|
128 |
-
"model.layers.20.mlp.up_proj.weight": "model-
|
129 |
-
"model.layers.20.post_attention_layernorm.weight": "model-
|
130 |
-
"model.layers.20.self_attn.k_proj.weight": "model-
|
131 |
-
"model.layers.20.self_attn.o_proj.weight": "model-
|
132 |
-
"model.layers.20.self_attn.q_proj.weight": "model-
|
133 |
-
"model.layers.20.self_attn.v_proj.weight": "model-
|
134 |
-
"model.layers.21.input_layernorm.weight": "model-
|
135 |
-
"model.layers.21.mlp.down_proj.weight": "model-
|
136 |
-
"model.layers.21.mlp.gate_proj.weight": "model-
|
137 |
-
"model.layers.21.mlp.up_proj.weight": "model-
|
138 |
-
"model.layers.21.post_attention_layernorm.weight": "model-
|
139 |
-
"model.layers.21.self_attn.k_proj.weight": "model-
|
140 |
-
"model.layers.21.self_attn.o_proj.weight": "model-
|
141 |
-
"model.layers.21.self_attn.q_proj.weight": "model-
|
142 |
-
"model.layers.21.self_attn.v_proj.weight": "model-
|
143 |
-
"model.layers.22.input_layernorm.weight": "model-
|
144 |
-
"model.layers.22.mlp.down_proj.weight": "model-
|
145 |
-
"model.layers.22.mlp.gate_proj.weight": "model-
|
146 |
-
"model.layers.22.mlp.up_proj.weight": "model-
|
147 |
-
"model.layers.22.post_attention_layernorm.weight": "model-
|
148 |
-
"model.layers.22.self_attn.k_proj.weight": "model-
|
149 |
-
"model.layers.22.self_attn.o_proj.weight": "model-
|
150 |
-
"model.layers.22.self_attn.q_proj.weight": "model-
|
151 |
-
"model.layers.22.self_attn.v_proj.weight": "model-
|
152 |
-
"model.layers.23.input_layernorm.weight": "model-
|
153 |
-
"model.layers.23.mlp.down_proj.weight": "model-
|
154 |
-
"model.layers.23.mlp.gate_proj.weight": "model-
|
155 |
-
"model.layers.23.mlp.up_proj.weight": "model-
|
156 |
-
"model.layers.23.post_attention_layernorm.weight": "model-
|
157 |
-
"model.layers.23.self_attn.k_proj.weight": "model-
|
158 |
-
"model.layers.23.self_attn.o_proj.weight": "model-
|
159 |
-
"model.layers.23.self_attn.q_proj.weight": "model-
|
160 |
-
"model.layers.23.self_attn.v_proj.weight": "model-
|
161 |
-
"model.layers.24.input_layernorm.weight": "model-
|
162 |
-
"model.layers.24.mlp.down_proj.weight": "model-
|
163 |
-
"model.layers.24.mlp.gate_proj.weight": "model-
|
164 |
-
"model.layers.24.mlp.up_proj.weight": "model-
|
165 |
-
"model.layers.24.post_attention_layernorm.weight": "model-
|
166 |
-
"model.layers.24.self_attn.k_proj.weight": "model-
|
167 |
-
"model.layers.24.self_attn.o_proj.weight": "model-
|
168 |
-
"model.layers.24.self_attn.q_proj.weight": "model-
|
169 |
-
"model.layers.24.self_attn.v_proj.weight": "model-
|
170 |
-
"model.layers.25.input_layernorm.weight": "model-
|
171 |
-
"model.layers.25.mlp.down_proj.weight": "model-
|
172 |
-
"model.layers.25.mlp.gate_proj.weight": "model-
|
173 |
-
"model.layers.25.mlp.up_proj.weight": "model-
|
174 |
-
"model.layers.25.post_attention_layernorm.weight": "model-
|
175 |
-
"model.layers.25.self_attn.k_proj.weight": "model-
|
176 |
-
"model.layers.25.self_attn.o_proj.weight": "model-
|
177 |
-
"model.layers.25.self_attn.q_proj.weight": "model-
|
178 |
-
"model.layers.25.self_attn.v_proj.weight": "model-
|
179 |
-
"model.layers.26.input_layernorm.weight": "model-
|
180 |
-
"model.layers.26.mlp.down_proj.weight": "model-
|
181 |
-
"model.layers.26.mlp.gate_proj.weight": "model-
|
182 |
-
"model.layers.26.mlp.up_proj.weight": "model-
|
183 |
-
"model.layers.26.post_attention_layernorm.weight": "model-
|
184 |
-
"model.layers.26.self_attn.k_proj.weight": "model-
|
185 |
-
"model.layers.26.self_attn.o_proj.weight": "model-
|
186 |
-
"model.layers.26.self_attn.q_proj.weight": "model-
|
187 |
-
"model.layers.26.self_attn.v_proj.weight": "model-
|
188 |
-
"model.layers.27.input_layernorm.weight": "model-
|
189 |
-
"model.layers.27.mlp.down_proj.weight": "model-
|
190 |
-
"model.layers.27.mlp.gate_proj.weight": "model-
|
191 |
-
"model.layers.27.mlp.up_proj.weight": "model-
|
192 |
-
"model.layers.27.post_attention_layernorm.weight": "model-
|
193 |
-
"model.layers.27.self_attn.k_proj.weight": "model-
|
194 |
-
"model.layers.27.self_attn.o_proj.weight": "model-
|
195 |
-
"model.layers.27.self_attn.q_proj.weight": "model-
|
196 |
-
"model.layers.27.self_attn.v_proj.weight": "model-
|
197 |
-
"model.layers.28.input_layernorm.weight": "model-
|
198 |
-
"model.layers.28.mlp.down_proj.weight": "model-
|
199 |
-
"model.layers.28.mlp.gate_proj.weight": "model-
|
200 |
-
"model.layers.28.mlp.up_proj.weight": "model-
|
201 |
-
"model.layers.28.post_attention_layernorm.weight": "model-
|
202 |
-
"model.layers.28.self_attn.k_proj.weight": "model-
|
203 |
-
"model.layers.28.self_attn.o_proj.weight": "model-
|
204 |
-
"model.layers.28.self_attn.q_proj.weight": "model-
|
205 |
-
"model.layers.28.self_attn.v_proj.weight": "model-
|
206 |
-
"model.layers.29.input_layernorm.weight": "model-
|
207 |
-
"model.layers.29.mlp.down_proj.weight": "model-
|
208 |
-
"model.layers.29.mlp.gate_proj.weight": "model-
|
209 |
-
"model.layers.29.mlp.up_proj.weight": "model-
|
210 |
-
"model.layers.29.post_attention_layernorm.weight": "model-
|
211 |
-
"model.layers.29.self_attn.k_proj.weight": "model-
|
212 |
-
"model.layers.29.self_attn.o_proj.weight": "model-
|
213 |
-
"model.layers.29.self_attn.q_proj.weight": "model-
|
214 |
-
"model.layers.29.self_attn.v_proj.weight": "model-
|
215 |
-
"model.layers.3.input_layernorm.weight": "model-00001-of-
|
216 |
-
"model.layers.3.mlp.down_proj.weight": "model-00001-of-
|
217 |
-
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-
|
218 |
-
"model.layers.3.mlp.up_proj.weight": "model-00001-of-
|
219 |
-
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-
|
220 |
-
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-
|
221 |
-
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-
|
222 |
-
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-
|
223 |
-
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-
|
224 |
-
"model.layers.30.input_layernorm.weight": "model-
|
225 |
-
"model.layers.30.mlp.down_proj.weight": "model-
|
226 |
-
"model.layers.30.mlp.gate_proj.weight": "model-
|
227 |
-
"model.layers.30.mlp.up_proj.weight": "model-
|
228 |
-
"model.layers.30.post_attention_layernorm.weight": "model-
|
229 |
-
"model.layers.30.self_attn.k_proj.weight": "model-
|
230 |
-
"model.layers.30.self_attn.o_proj.weight": "model-
|
231 |
-
"model.layers.30.self_attn.q_proj.weight": "model-
|
232 |
-
"model.layers.30.self_attn.v_proj.weight": "model-
|
233 |
-
"model.layers.31.input_layernorm.weight": "model-
|
234 |
-
"model.layers.31.mlp.down_proj.weight": "model-
|
235 |
-
"model.layers.31.mlp.gate_proj.weight": "model-
|
236 |
-
"model.layers.31.mlp.up_proj.weight": "model-
|
237 |
-
"model.layers.31.post_attention_layernorm.weight": "model-
|
238 |
-
"model.layers.31.self_attn.k_proj.weight": "model-
|
239 |
-
"model.layers.31.self_attn.o_proj.weight": "model-
|
240 |
-
"model.layers.31.self_attn.q_proj.weight": "model-
|
241 |
-
"model.layers.31.self_attn.v_proj.weight": "model-
|
242 |
-
"model.layers.32.input_layernorm.weight": "model-
|
243 |
-
"model.layers.32.mlp.down_proj.weight": "model-
|
244 |
-
"model.layers.32.mlp.gate_proj.weight": "model-
|
245 |
-
"model.layers.32.mlp.up_proj.weight": "model-
|
246 |
-
"model.layers.32.post_attention_layernorm.weight": "model-
|
247 |
-
"model.layers.32.self_attn.k_proj.weight": "model-
|
248 |
-
"model.layers.32.self_attn.o_proj.weight": "model-
|
249 |
-
"model.layers.32.self_attn.q_proj.weight": "model-
|
250 |
-
"model.layers.32.self_attn.v_proj.weight": "model-
|
251 |
-
"model.layers.33.input_layernorm.weight": "model-
|
252 |
-
"model.layers.33.mlp.down_proj.weight": "model-
|
253 |
-
"model.layers.33.mlp.gate_proj.weight": "model-
|
254 |
-
"model.layers.33.mlp.up_proj.weight": "model-
|
255 |
-
"model.layers.33.post_attention_layernorm.weight": "model-
|
256 |
-
"model.layers.33.self_attn.k_proj.weight": "model-
|
257 |
-
"model.layers.33.self_attn.o_proj.weight": "model-
|
258 |
-
"model.layers.33.self_attn.q_proj.weight": "model-
|
259 |
-
"model.layers.33.self_attn.v_proj.weight": "model-
|
260 |
-
"model.layers.34.input_layernorm.weight": "model-
|
261 |
-
"model.layers.34.mlp.down_proj.weight": "model-
|
262 |
-
"model.layers.34.mlp.gate_proj.weight": "model-
|
263 |
-
"model.layers.34.mlp.up_proj.weight": "model-
|
264 |
-
"model.layers.34.post_attention_layernorm.weight": "model-
|
265 |
-
"model.layers.34.self_attn.k_proj.weight": "model-
|
266 |
-
"model.layers.34.self_attn.o_proj.weight": "model-
|
267 |
-
"model.layers.34.self_attn.q_proj.weight": "model-
|
268 |
-
"model.layers.34.self_attn.v_proj.weight": "model-
|
269 |
-
"model.layers.35.input_layernorm.weight": "model-
|
270 |
-
"model.layers.35.mlp.down_proj.weight": "model-
|
271 |
-
"model.layers.35.mlp.gate_proj.weight": "model-
|
272 |
-
"model.layers.35.mlp.up_proj.weight": "model-
|
273 |
-
"model.layers.35.post_attention_layernorm.weight": "model-
|
274 |
-
"model.layers.35.self_attn.k_proj.weight": "model-
|
275 |
-
"model.layers.35.self_attn.o_proj.weight": "model-
|
276 |
-
"model.layers.35.self_attn.q_proj.weight": "model-
|
277 |
-
"model.layers.35.self_attn.v_proj.weight": "model-
|
278 |
-
"model.layers.36.input_layernorm.weight": "model-
|
279 |
-
"model.layers.36.mlp.down_proj.weight": "model-
|
280 |
-
"model.layers.36.mlp.gate_proj.weight": "model-
|
281 |
-
"model.layers.36.mlp.up_proj.weight": "model-
|
282 |
-
"model.layers.36.post_attention_layernorm.weight": "model-
|
283 |
-
"model.layers.36.self_attn.k_proj.weight": "model-
|
284 |
-
"model.layers.36.self_attn.o_proj.weight": "model-
|
285 |
-
"model.layers.36.self_attn.q_proj.weight": "model-
|
286 |
-
"model.layers.36.self_attn.v_proj.weight": "model-
|
287 |
-
"model.layers.37.input_layernorm.weight": "model-
|
288 |
-
"model.layers.37.mlp.down_proj.weight": "model-
|
289 |
-
"model.layers.37.mlp.gate_proj.weight": "model-
|
290 |
-
"model.layers.37.mlp.up_proj.weight": "model-
|
291 |
-
"model.layers.37.post_attention_layernorm.weight": "model-
|
292 |
-
"model.layers.37.self_attn.k_proj.weight": "model-
|
293 |
-
"model.layers.37.self_attn.o_proj.weight": "model-
|
294 |
-
"model.layers.37.self_attn.q_proj.weight": "model-
|
295 |
-
"model.layers.37.self_attn.v_proj.weight": "model-
|
296 |
-
"model.layers.38.input_layernorm.weight": "model-
|
297 |
-
"model.layers.38.mlp.down_proj.weight": "model-
|
298 |
-
"model.layers.38.mlp.gate_proj.weight": "model-
|
299 |
-
"model.layers.38.mlp.up_proj.weight": "model-
|
300 |
-
"model.layers.38.post_attention_layernorm.weight": "model-
|
301 |
-
"model.layers.38.self_attn.k_proj.weight": "model-
|
302 |
-
"model.layers.38.self_attn.o_proj.weight": "model-
|
303 |
-
"model.layers.38.self_attn.q_proj.weight": "model-
|
304 |
-
"model.layers.38.self_attn.v_proj.weight": "model-
|
305 |
-
"model.layers.39.input_layernorm.weight": "model-
|
306 |
-
"model.layers.39.mlp.down_proj.weight": "model-
|
307 |
-
"model.layers.39.mlp.gate_proj.weight": "model-
|
308 |
-
"model.layers.39.mlp.up_proj.weight": "model-
|
309 |
-
"model.layers.39.post_attention_layernorm.weight": "model-
|
310 |
-
"model.layers.39.self_attn.k_proj.weight": "model-
|
311 |
-
"model.layers.39.self_attn.o_proj.weight": "model-
|
312 |
-
"model.layers.39.self_attn.q_proj.weight": "model-
|
313 |
-
"model.layers.39.self_attn.v_proj.weight": "model-
|
314 |
-
"model.layers.4.input_layernorm.weight": "model-00001-of-
|
315 |
-
"model.layers.4.mlp.down_proj.weight": "model-00001-of-
|
316 |
-
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-
|
317 |
-
"model.layers.4.mlp.up_proj.weight": "model-00001-of-
|
318 |
-
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-
|
319 |
-
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-
|
320 |
-
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-
|
321 |
-
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-
|
322 |
-
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-
|
323 |
-
"model.layers.40.input_layernorm.weight": "model-
|
324 |
-
"model.layers.40.mlp.down_proj.weight": "model-
|
325 |
-
"model.layers.40.mlp.gate_proj.weight": "model-
|
326 |
-
"model.layers.40.mlp.up_proj.weight": "model-
|
327 |
-
"model.layers.40.post_attention_layernorm.weight": "model-
|
328 |
-
"model.layers.40.self_attn.k_proj.weight": "model-
|
329 |
-
"model.layers.40.self_attn.o_proj.weight": "model-
|
330 |
-
"model.layers.40.self_attn.q_proj.weight": "model-
|
331 |
-
"model.layers.40.self_attn.v_proj.weight": "model-
|
332 |
-
"model.layers.41.input_layernorm.weight": "model-
|
333 |
-
"model.layers.41.mlp.down_proj.weight": "model-
|
334 |
-
"model.layers.41.mlp.gate_proj.weight": "model-
|
335 |
-
"model.layers.41.mlp.up_proj.weight": "model-
|
336 |
-
"model.layers.41.post_attention_layernorm.weight": "model-
|
337 |
-
"model.layers.41.self_attn.k_proj.weight": "model-
|
338 |
-
"model.layers.41.self_attn.o_proj.weight": "model-
|
339 |
-
"model.layers.41.self_attn.q_proj.weight": "model-
|
340 |
-
"model.layers.41.self_attn.v_proj.weight": "model-
|
341 |
-
"model.layers.42.input_layernorm.weight": "model-
|
342 |
-
"model.layers.42.mlp.down_proj.weight": "model-
|
343 |
-
"model.layers.42.mlp.gate_proj.weight": "model-
|
344 |
-
"model.layers.42.mlp.up_proj.weight": "model-
|
345 |
-
"model.layers.42.post_attention_layernorm.weight": "model-
|
346 |
-
"model.layers.42.self_attn.k_proj.weight": "model-
|
347 |
-
"model.layers.42.self_attn.o_proj.weight": "model-
|
348 |
-
"model.layers.42.self_attn.q_proj.weight": "model-
|
349 |
-
"model.layers.42.self_attn.v_proj.weight": "model-
|
350 |
-
"model.layers.43.input_layernorm.weight": "model-
|
351 |
-
"model.layers.43.mlp.down_proj.weight": "model-
|
352 |
-
"model.layers.43.mlp.gate_proj.weight": "model-
|
353 |
-
"model.layers.43.mlp.up_proj.weight": "model-
|
354 |
-
"model.layers.43.post_attention_layernorm.weight": "model-
|
355 |
-
"model.layers.43.self_attn.k_proj.weight": "model-
|
356 |
-
"model.layers.43.self_attn.o_proj.weight": "model-
|
357 |
-
"model.layers.43.self_attn.q_proj.weight": "model-
|
358 |
-
"model.layers.43.self_attn.v_proj.weight": "model-
|
359 |
-
"model.layers.44.input_layernorm.weight": "model-
|
360 |
-
"model.layers.44.mlp.down_proj.weight": "model-
|
361 |
-
"model.layers.44.mlp.gate_proj.weight": "model-
|
362 |
-
"model.layers.44.mlp.up_proj.weight": "model-
|
363 |
-
"model.layers.44.post_attention_layernorm.weight": "model-
|
364 |
-
"model.layers.44.self_attn.k_proj.weight": "model-
|
365 |
-
"model.layers.44.self_attn.o_proj.weight": "model-
|
366 |
-
"model.layers.44.self_attn.q_proj.weight": "model-
|
367 |
-
"model.layers.44.self_attn.v_proj.weight": "model-
|
368 |
-
"model.layers.45.input_layernorm.weight": "model-
|
369 |
-
"model.layers.45.mlp.down_proj.weight": "model-
|
370 |
-
"model.layers.45.mlp.gate_proj.weight": "model-
|
371 |
-
"model.layers.45.mlp.up_proj.weight": "model-
|
372 |
-
"model.layers.45.post_attention_layernorm.weight": "model-
|
373 |
-
"model.layers.45.self_attn.k_proj.weight": "model-
|
374 |
-
"model.layers.45.self_attn.o_proj.weight": "model-
|
375 |
-
"model.layers.45.self_attn.q_proj.weight": "model-
|
376 |
-
"model.layers.45.self_attn.v_proj.weight": "model-
|
377 |
-
"model.layers.46.input_layernorm.weight": "model-
|
378 |
-
"model.layers.46.mlp.down_proj.weight": "model-
|
379 |
-
"model.layers.46.mlp.gate_proj.weight": "model-
|
380 |
-
"model.layers.46.mlp.up_proj.weight": "model-
|
381 |
-
"model.layers.46.post_attention_layernorm.weight": "model-
|
382 |
-
"model.layers.46.self_attn.k_proj.weight": "model-
|
383 |
-
"model.layers.46.self_attn.o_proj.weight": "model-
|
384 |
-
"model.layers.46.self_attn.q_proj.weight": "model-
|
385 |
-
"model.layers.46.self_attn.v_proj.weight": "model-
|
386 |
-
"model.layers.47.input_layernorm.weight": "model-
|
387 |
-
"model.layers.47.mlp.down_proj.weight": "model-
|
388 |
-
"model.layers.47.mlp.gate_proj.weight": "model-
|
389 |
-
"model.layers.47.mlp.up_proj.weight": "model-
|
390 |
-
"model.layers.47.post_attention_layernorm.weight": "model-
|
391 |
-
"model.layers.47.self_attn.k_proj.weight": "model-
|
392 |
-
"model.layers.47.self_attn.o_proj.weight": "model-
|
393 |
-
"model.layers.47.self_attn.q_proj.weight": "model-
|
394 |
-
"model.layers.47.self_attn.v_proj.weight": "model-
|
395 |
-
"model.layers.5.input_layernorm.weight": "model-00001-of-
|
396 |
-
"model.layers.5.mlp.down_proj.weight": "model-00001-of-
|
397 |
-
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-
|
398 |
-
"model.layers.5.mlp.up_proj.weight": "model-00001-of-
|
399 |
-
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-
|
400 |
-
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-
|
401 |
-
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-
|
402 |
-
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-
|
403 |
-
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-
|
404 |
-
"model.layers.6.input_layernorm.weight": "model-00001-of-
|
405 |
-
"model.layers.6.mlp.down_proj.weight": "model-00001-of-
|
406 |
-
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-
|
407 |
-
"model.layers.6.mlp.up_proj.weight": "model-00001-of-
|
408 |
-
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-
|
409 |
-
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-
|
410 |
-
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-
|
411 |
-
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-
|
412 |
-
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-
|
413 |
-
"model.layers.7.input_layernorm.weight": "model-00001-of-
|
414 |
-
"model.layers.7.mlp.down_proj.weight": "model-00001-of-
|
415 |
-
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-
|
416 |
-
"model.layers.7.mlp.up_proj.weight": "model-00001-of-
|
417 |
-
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-
|
418 |
-
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-
|
419 |
-
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-
|
420 |
-
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-
|
421 |
-
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-
|
422 |
-
"model.layers.8.input_layernorm.weight": "model-00001-of-
|
423 |
-
"model.layers.8.mlp.down_proj.weight": "model-00001-of-
|
424 |
-
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-
|
425 |
-
"model.layers.8.mlp.up_proj.weight": "model-00001-of-
|
426 |
-
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-
|
427 |
-
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-
|
428 |
-
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-
|
429 |
-
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-
|
430 |
-
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-
|
431 |
-
"model.layers.9.input_layernorm.weight": "model-00001-of-
|
432 |
-
"model.layers.9.mlp.down_proj.weight": "model-00001-of-
|
433 |
-
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-
|
434 |
-
"model.layers.9.mlp.up_proj.weight": "model-00001-of-
|
435 |
-
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-
|
436 |
-
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-
|
437 |
-
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-
|
438 |
-
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-
|
439 |
-
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-
|
440 |
-
"model.norm.weight": "model-
|
441 |
}
|
442 |
}
|
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
+
"total_size": 35216965632
|
4 |
},
|
5 |
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
323 |
+
"model.layers.40.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
324 |
+
"model.layers.40.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
325 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
326 |
+
"model.layers.40.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
327 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
328 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
329 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
330 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
331 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
332 |
+
"model.layers.41.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
333 |
+
"model.layers.41.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
334 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
335 |
+
"model.layers.41.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
336 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
337 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
338 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
339 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
340 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
341 |
+
"model.layers.42.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
342 |
+
"model.layers.42.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
343 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
344 |
+
"model.layers.42.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
345 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
346 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
347 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
348 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
349 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
350 |
+
"model.layers.43.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
351 |
+
"model.layers.43.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
352 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
353 |
+
"model.layers.43.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
354 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
355 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
356 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
357 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
358 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
359 |
+
"model.layers.44.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
360 |
+
"model.layers.44.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
361 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
362 |
+
"model.layers.44.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
363 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
364 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
365 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
366 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
367 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
368 |
+
"model.layers.45.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
369 |
+
"model.layers.45.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
370 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
371 |
+
"model.layers.45.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
372 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
373 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
374 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
375 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
376 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
377 |
+
"model.layers.46.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
378 |
+
"model.layers.46.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
379 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
380 |
+
"model.layers.46.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
381 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
382 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
383 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
384 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
385 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
386 |
+
"model.layers.47.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
387 |
+
"model.layers.47.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
388 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
389 |
+
"model.layers.47.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
390 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
391 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
392 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
393 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
394 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
395 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
396 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
398 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
400 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
402 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
404 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
406 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
407 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
408 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
410 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
412 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
413 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
414 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
415 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
416 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
418 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
420 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
422 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
424 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
426 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
428 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
430 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
432 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
434 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
435 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
436 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
438 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
440 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
441 |
}
|
442 |
}
|