LICENSE.txt DELETED
@@ -1,201 +0,0 @@
1
- Apache License
2
- Version 2.0, January 2004
3
- http://www.apache.org/licenses/
4
-
5
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
-
7
- 1. Definitions.
8
-
9
- "License" shall mean the terms and conditions for use, reproduction,
10
- and distribution as defined by Sections 1 through 9 of this document.
11
-
12
- "Licensor" shall mean the copyright owner or entity authorized by
13
- the copyright owner that is granting the License.
14
-
15
- "Legal Entity" shall mean the union of the acting entity and all
16
- other entities that control, are controlled by, or are under common
17
- control with that entity. For the purposes of this definition,
18
- "control" means (i) the power, direct or indirect, to cause the
19
- direction or management of such entity, whether by contract or
20
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
- outstanding shares, or (iii) beneficial ownership of such entity.
22
-
23
- "You" (or "Your") shall mean an individual or Legal Entity
24
- exercising permissions granted by this License.
25
-
26
- "Source" form shall mean the preferred form for making modifications,
27
- including but not limited to software source code, documentation
28
- source, and configuration files.
29
-
30
- "Object" form shall mean any form resulting from mechanical
31
- transformation or translation of a Source form, including but
32
- not limited to compiled object code, generated documentation,
33
- and conversions to other media types.
34
-
35
- "Work" shall mean the work of authorship, whether in Source or
36
- Object form, made available under the License, as indicated by a
37
- copyright notice that is included in or attached to the work
38
- (an example is provided in the Appendix below).
39
-
40
- "Derivative Works" shall mean any work, whether in Source or Object
41
- form, that is based on (or derived from) the Work and for which the
42
- editorial revisions, annotations, elaborations, or other modifications
43
- represent, as a whole, an original work of authorship. For the purposes
44
- of this License, Derivative Works shall not include works that remain
45
- separable from, or merely link (or bind by name) to the interfaces of,
46
- the Work and Derivative Works thereof.
47
-
48
- "Contribution" shall mean any work of authorship, including
49
- the original version of the Work and any modifications or additions
50
- to that Work or Derivative Works thereof, that is intentionally
51
- submitted to Licensor for inclusion in the Work by the copyright owner
52
- or by an individual or Legal Entity authorized to submit on behalf of
53
- the copyright owner. For the purposes of this definition, "submitted"
54
- means any form of electronic, verbal, or written communication sent
55
- to the Licensor or its representatives, including but not limited to
56
- communication on electronic mailing lists, source code control systems,
57
- and issue tracking systems that are managed by, or on behalf of, the
58
- Licensor for the purpose of discussing and improving the Work, but
59
- excluding communication that is conspicuously marked or otherwise
60
- designated in writing by the copyright owner as "Not a Contribution."
61
-
62
- "Contributor" shall mean Licensor and any individual or Legal Entity
63
- on behalf of whom a Contribution has been received by Licensor and
64
- subsequently incorporated within the Work.
65
-
66
- 2. Grant of Copyright License. Subject to the terms and conditions of
67
- this License, each Contributor hereby grants to You a perpetual,
68
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
- copyright license to reproduce, prepare Derivative Works of,
70
- publicly display, publicly perform, sublicense, and distribute the
71
- Work and such Derivative Works in Source or Object form.
72
-
73
- 3. Grant of Patent License. Subject to the terms and conditions of
74
- this License, each Contributor hereby grants to You a perpetual,
75
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
- (except as stated in this section) patent license to make, have made,
77
- use, offer to sell, sell, import, and otherwise transfer the Work,
78
- where such license applies only to those patent claims licensable
79
- by such Contributor that are necessarily infringed by their
80
- Contribution(s) alone or by combination of their Contribution(s)
81
- with the Work to which such Contribution(s) was submitted. If You
82
- institute patent litigation against any entity (including a
83
- cross-claim or counterclaim in a lawsuit) alleging that the Work
84
- or a Contribution incorporated within the Work constitutes direct
85
- or contributory patent infringement, then any patent licenses
86
- granted to You under this License for that Work shall terminate
87
- as of the date such litigation is filed.
88
-
89
- 4. Redistribution. You may reproduce and distribute copies of the
90
- Work or Derivative Works thereof in any medium, with or without
91
- modifications, and in Source or Object form, provided that You
92
- meet the following conditions:
93
-
94
- (a) You must give any other recipients of the Work or
95
- Derivative Works a copy of this License; and
96
-
97
- (b) You must cause any modified files to carry prominent notices
98
- stating that You changed the files; and
99
-
100
- (c) You must retain, in the Source form of any Derivative Works
101
- that You distribute, all copyright, patent, trademark, and
102
- attribution notices from the Source form of the Work,
103
- excluding those notices that do not pertain to any part of
104
- the Derivative Works; and
105
-
106
- (d) If the Work includes a "NOTICE" text file as part of its
107
- distribution, then any Derivative Works that You distribute must
108
- include a readable copy of the attribution notices contained
109
- within such NOTICE file, excluding those notices that do not
110
- pertain to any part of the Derivative Works, in at least one
111
- of the following places: within a NOTICE text file distributed
112
- as part of the Derivative Works; within the Source form or
113
- documentation, if provided along with the Derivative Works; or,
114
- within a display generated by the Derivative Works, if and
115
- wherever such third-party notices normally appear. The contents
116
- of the NOTICE file are for informational purposes only and
117
- do not modify the License. You may add Your own attribution
118
- notices within Derivative Works that You distribute, alongside
119
- or as an addendum to the NOTICE text from the Work, provided
120
- that such additional attribution notices cannot be construed
121
- as modifying the License.
122
-
123
- You may add Your own copyright statement to Your modifications and
124
- may provide additional or different license terms and conditions
125
- for use, reproduction, or distribution of Your modifications, or
126
- for any such Derivative Works as a whole, provided Your use,
127
- reproduction, and distribution of the Work otherwise complies with
128
- the conditions stated in this License.
129
-
130
- 5. Submission of Contributions. Unless You explicitly state otherwise,
131
- any Contribution intentionally submitted for inclusion in the Work
132
- by You to the Licensor shall be under the terms and conditions of
133
- this License, without any additional terms or conditions.
134
- Notwithstanding the above, nothing herein shall supersede or modify
135
- the terms of any separate license agreement you may have executed
136
- with Licensor regarding such Contributions.
137
-
138
- 6. Trademarks. This License does not grant permission to use the trade
139
- names, trademarks, service marks, or product names of the Licensor,
140
- except as required for reasonable and customary use in describing the
141
- origin of the Work and reproducing the content of the NOTICE file.
142
-
143
- 7. Disclaimer of Warranty. Unless required by applicable law or
144
- agreed to in writing, Licensor provides the Work (and each
145
- Contributor provides its Contributions) on an "AS IS" BASIS,
146
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
- implied, including, without limitation, any warranties or conditions
148
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
- PARTICULAR PURPOSE. You are solely responsible for determining the
150
- appropriateness of using or redistributing the Work and assume any
151
- risks associated with Your exercise of permissions under this License.
152
-
153
- 8. Limitation of Liability. In no event and under no legal theory,
154
- whether in tort (including negligence), contract, or otherwise,
155
- unless required by applicable law (such as deliberate and grossly
156
- negligent acts) or agreed to in writing, shall any Contributor be
157
- liable to You for damages, including any direct, indirect, special,
158
- incidental, or consequential damages of any character arising as a
159
- result of this License or out of the use or inability to use the
160
- Work (including but not limited to damages for loss of goodwill,
161
- work stoppage, computer failure or malfunction, or any and all
162
- other commercial damages or losses), even if such Contributor
163
- has been advised of the possibility of such damages.
164
-
165
- 9. Accepting Warranty or Additional Liability. While redistributing
166
- the Work or Derivative Works thereof, You may choose to offer,
167
- and charge a fee for, acceptance of support, warranty, indemnity,
168
- or other liability obligations and/or rights consistent with this
169
- License. However, in accepting such obligations, You may act only
170
- on Your own behalf and on Your sole responsibility, not on behalf
171
- of any other Contributor, and only if You agree to indemnify,
172
- defend, and hold each Contributor harmless for any liability
173
- incurred by, or claims asserted against, such Contributor by reason
174
- of your accepting any such warranty or additional liability.
175
-
176
- END OF TERMS AND CONDITIONS
177
-
178
- APPENDIX: How to apply the Apache License to your work.
179
-
180
- To apply the Apache License to your work, attach the following
181
- boilerplate notice, with the fields enclosed by brackets "[]"
182
- replaced with your own identifying information. (Don't include
183
- the brackets!) The text should be enclosed in the appropriate
184
- comment syntax for the file format. We also recommend that a
185
- file or class name and description of purpose be included on the
186
- same "printed page" as the copyright notice for easier
187
- identification within third-party archives.
188
-
189
- Copyright 2023-2024 Shanghai AI Laboratory
190
-
191
- Licensed under the Apache License, Version 2.0 (the "License");
192
- you may not use this file except in compliance with the License.
193
- You may obtain a copy of the License at
194
-
195
- http://www.apache.org/licenses/LICENSE-2.0
196
-
197
- Unless required by applicable law or agreed to in writing, software
198
- distributed under the License is distributed on an "AS IS" BASIS,
199
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
- See the License for the specific language governing permissions and
201
- limitations under the License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,7 +1,3 @@
1
- ---
2
- license: apache-2.0
3
- pipeline_tag: text-generation
4
- ---
5
  # InternLM
6
 
7
 
@@ -23,7 +19,7 @@ pipeline_tag: text-generation
23
 
24
  [![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
25
 
26
- [💻Github Repo](https://github.com/InternLM/InternLM) • [🤗Demo](https://huggingface.co/spaces/internlm/internlm3-8b-instruct) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new) • [📜Technical Report](https://arxiv.org/abs/2403.17297)
27
 
28
  </div>
29
 
@@ -48,26 +44,25 @@ InternLM3 supports both the deep thinking mode for solving complicated reasoning
48
 
49
  We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://rank.opencompass.org.cn) for more evaluation results.
50
 
51
- | | Benchmark | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(closed source) |
52
- | ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | -------------------------- |
53
- | General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
54
- | | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
55
- | | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
56
- | Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
57
- | | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
58
- | | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
59
- | | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
60
- | MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
61
- | | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
62
- | Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
63
- | | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
64
- | Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
65
- | Long Context | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
66
- | Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
67
- | | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
68
- | | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
69
-
70
- - Values marked in bold indicate the **highest** in open source models
71
  - The evaluation results were obtained from [OpenCompass](https://github.com/internLM/OpenCompass/) (some data marked with *, which means evaluating with Thinking Mode), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
72
  - The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
73
 
@@ -91,7 +86,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
91
  model_dir = "internlm/internlm3-8b-instruct"
92
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
93
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
94
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
95
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
96
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
97
  # pip install -U bitsandbytes
@@ -106,7 +101,7 @@ messages = [
106
  {"role": "system", "content": system_prompt},
107
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
108
  ]
109
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
110
 
111
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
112
 
@@ -115,7 +110,7 @@ generated_ids = [
115
  ]
116
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
117
  print(prompt)
118
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
119
  print(response)
120
  ```
121
 
@@ -162,54 +157,15 @@ Find more details in the [LMDeploy documentation](https://lmdeploy.readthedocs.i
162
 
163
  #### Ollama inference
164
 
165
- First install ollama,
166
-
167
- ```python
168
- # install ollama
169
- curl -fsSL https://ollama.com/install.sh | sh
170
- # fetch model
171
- ollama pull internlm/internlm3-8b-instruct
172
- # install
173
- pip install ollama
174
- ```
175
-
176
- inference code,
177
-
178
- ```python
179
- import ollama
180
-
181
- system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
182
- - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
183
- - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
184
-
185
- messages = [
186
- {
187
- "role": "system",
188
- "content": system_prompt,
189
- },
190
- {
191
- "role": "user",
192
- "content": "Please tell me five scenic spots in Shanghai"
193
- },
194
- ]
195
-
196
- stream = ollama.chat(
197
- model='internlm/internlm3-8b-instruct',
198
- messages=messages,
199
- stream=True,
200
- )
201
-
202
- for chunk in stream:
203
- print(chunk['message']['content'], end='', flush=True)
204
- ```
205
-
206
 
207
  #### vLLM inference
208
 
209
- Refer to [installation](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) to install the latest code of vllm
210
 
211
  ```python
212
- pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
 
213
  ```
214
 
215
  inference code:
@@ -311,7 +267,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
311
  model_dir = "internlm/internlm3-8b-instruct"
312
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
313
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
314
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
315
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
316
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
317
  # pip install -U bitsandbytes
@@ -323,7 +279,7 @@ messages = [
323
  {"role": "system", "content": thinking_system_prompt},
324
  {"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
325
  ]
326
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
327
 
328
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
329
 
@@ -332,7 +288,7 @@ generated_ids = [
332
  ]
333
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
334
  print(prompt)
335
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
336
  print(response)
337
  ```
338
  #### LMDeploy inference
@@ -362,52 +318,14 @@ print(response)
362
 
363
  #### Ollama inference
364
 
365
- First install ollama,
366
-
367
- ```python
368
- # install ollama
369
- curl -fsSL https://ollama.com/install.sh | sh
370
- # fetch model
371
- ollama pull internlm/internlm3-8b-instruct
372
- # install
373
- pip install ollama
374
- ```
375
-
376
- inference code,
377
-
378
- ```python
379
- import ollama
380
-
381
- messages = [
382
- {
383
- "role": "system",
384
- "content": thinking_system_prompt,
385
- },
386
- {
387
- "role": "user",
388
- "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
389
- },
390
- ]
391
-
392
- stream = ollama.chat(
393
- model='internlm/internlm3-8b-instruct',
394
- messages=messages,
395
- stream=True,
396
- )
397
-
398
- for chunk in stream:
399
- print(chunk['message']['content'], end='', flush=True)
400
- ```
401
-
402
-
403
- ####
404
 
405
  #### vLLM inference
406
 
407
- Refer to [installation](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) to install the latest code of vllm
408
-
409
  ```python
410
- pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
 
411
  ```
412
 
413
  inference code
@@ -471,26 +389,25 @@ InternLM3支持通过长思维链求解复杂推理任务的深度思考模式
471
 
472
  我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。
473
 
474
- | | 评测集\模型 | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(闭源) |
475
- | ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ----------------- |
476
- | General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
477
- | | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
478
- | | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
479
- | Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
480
- | | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
481
- | | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
482
- | | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
483
- | MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
484
- | | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
485
- | Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
486
- | | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
487
- | Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
488
- | LongContext | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
489
- | Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
490
- | | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
491
- | | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
492
-
493
- - 表中标粗的数值表示在对比的开源模型中的最高值。
494
  - 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表使用深度思考模式进行评测),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
495
  - 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
496
 
@@ -518,7 +435,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
518
  model_dir = "internlm/internlm3-8b-instruct"
519
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
520
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
521
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
522
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
523
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
524
  # pip install -U bitsandbytes
@@ -533,7 +450,7 @@ messages = [
533
  {"role": "system", "content": system_prompt},
534
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
535
  ]
536
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
537
 
538
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
539
 
@@ -542,7 +459,7 @@ generated_ids = [
542
  ]
543
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
544
  print(prompt)
545
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
546
  print(response)
547
  ```
548
 
@@ -590,56 +507,15 @@ curl http://localhost:23333/v1/chat/completions \
590
 
591
  ##### Ollama 推理
592
 
593
- 准备工作
594
-
595
- ```python
596
- # install ollama
597
- curl -fsSL https://ollama.com/install.sh | sh
598
- # fetch 模型
599
- ollama pull internlm/internlm3-8b-instruct
600
- # install python库
601
- pip install ollama
602
- ```
603
-
604
- 推理代码
605
-
606
- ```python
607
- import ollama
608
-
609
- system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
610
- - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
611
- - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
612
-
613
- messages = [
614
- {
615
- "role": "system",
616
- "content": system_prompt,
617
- },
618
- {
619
- "role": "user",
620
- "content": "Please tell me five scenic spots in Shanghai"
621
- },
622
- ]
623
-
624
- stream = ollama.chat(
625
- model='internlm/internlm3-8b-instruct',
626
- messages=messages,
627
- stream=True,
628
- )
629
-
630
- for chunk in stream:
631
- print(chunk['message']['content'], end='', flush=True)
632
- ```
633
-
634
-
635
- ####
636
 
637
  ##### vLLM 推理
638
 
639
- 参考[文档](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) 安装 vllm 最新代码
640
 
641
- ```bash
642
- pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
 
643
  ```
644
 
645
  推理代码
@@ -740,7 +616,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
740
  model_dir = "internlm/internlm3-8b-instruct"
741
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
742
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
743
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
744
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
745
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
746
  # pip install -U bitsandbytes
@@ -752,7 +628,7 @@ messages = [
752
  {"role": "system", "content": thinking_system_prompt},
753
  {"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
754
  ]
755
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
756
 
757
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
758
 
@@ -761,7 +637,7 @@ generated_ids = [
761
  ]
762
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
763
  print(prompt)
764
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
765
  print(response)
766
  ```
767
  ##### LMDeploy 推理
@@ -791,52 +667,15 @@ print(response)
791
 
792
  ##### Ollama 推理
793
 
794
- 准备工作
795
-
796
- ```python
797
- # install ollama
798
- curl -fsSL https://ollama.com/install.sh | sh
799
- # fetch 模型
800
- ollama pull internlm/internlm3-8b-instruct
801
- # install python库
802
- pip install ollama
803
- ```
804
-
805
- inference code,
806
-
807
- ```python
808
- import ollama
809
-
810
- messages = [
811
- {
812
- "role": "system",
813
- "content": thinking_system_prompt,
814
- },
815
- {
816
- "role": "user",
817
- "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
818
- },
819
- ]
820
-
821
- stream = ollama.chat(
822
- model='internlm/internlm3-8b-instruct',
823
- messages=messages,
824
- stream=True,
825
- )
826
-
827
- for chunk in stream:
828
- print(chunk['message']['content'], end='', flush=True)
829
- ```
830
-
831
-
832
- ####
833
 
834
  ##### vLLM 推理
835
 
836
- 参考[文档](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) 安装 vllm 最新代码
837
 
838
- ```bash
839
- pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
 
840
  ```
841
 
842
  推理代码
@@ -886,4 +725,4 @@ print(outputs)
886
  archivePrefix={arXiv},
887
  primaryClass={cs.CL}
888
  }
889
- ```
 
 
 
 
 
1
  # InternLM
2
 
3
 
 
19
 
20
  [![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
21
 
22
+ [💻Github Repo](https://github.com/InternLM/InternLM) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new) • [📜Technical Report](https://arxiv.org/abs/2403.17297)
23
 
24
  </div>
25
 
 
44
 
45
  We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://rank.opencompass.org.cn) for more evaluation results.
46
 
47
+ | Benchmark | | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(close source) |
48
+ | ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ------------------------- |
49
+ | General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
50
+ | | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
51
+ | | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
52
+ | Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
53
+ | | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
54
+ | | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
55
+ | | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
56
+ | MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
57
+ | | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
58
+ | Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
59
+ | | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
60
+ | Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
61
+ | Long Context | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
62
+ | Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
63
+ | | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
64
+ | | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
65
+
 
66
  - The evaluation results were obtained from [OpenCompass](https://github.com/internLM/OpenCompass/) (some data marked with *, which means evaluating with Thinking Mode), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
67
  - The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
68
 
 
86
  model_dir = "internlm/internlm3-8b-instruct"
87
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
88
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
89
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
90
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
91
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
92
  # pip install -U bitsandbytes
 
101
  {"role": "system", "content": system_prompt},
102
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
103
  ]
104
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
105
 
106
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
107
 
 
110
  ]
111
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
112
  print(prompt)
113
+ response = tokenizer.batch_decode(generated_ids)[0]
114
  print(response)
115
  ```
116
 
 
157
 
158
  #### Ollama inference
159
 
160
+ TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
 
162
  #### vLLM inference
163
 
164
+ We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
165
 
166
  ```python
167
+ git clone -b support-internlm3 https://github.com/RunningLeon/vllm.git
168
+ pip install -e .
169
  ```
170
 
171
  inference code:
 
267
  model_dir = "internlm/internlm3-8b-instruct"
268
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
269
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
270
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
271
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
272
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
273
  # pip install -U bitsandbytes
 
279
  {"role": "system", "content": thinking_system_prompt},
280
  {"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
281
  ]
282
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
283
 
284
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
285
 
 
288
  ]
289
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
290
  print(prompt)
291
+ response = tokenizer.batch_decode(generated_ids)[0]
292
  print(response)
293
  ```
294
  #### LMDeploy inference
 
318
 
319
  #### Ollama inference
320
 
321
+ TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322
 
323
  #### vLLM inference
324
 
325
+ We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
 
326
  ```python
327
+ git clone https://github.com/RunningLeon/vllm.git
328
+ pip install -e .
329
  ```
330
 
331
  inference code
 
389
 
390
  我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。
391
 
392
+ | 评测集\模型 | | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(close source) |
393
+ | ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ------------------------- |
394
+ | General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
395
+ | | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
396
+ | | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
397
+ | Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
398
+ | | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
399
+ | | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
400
+ | | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
401
+ | MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
402
+ | | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
403
+ | Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
404
+ | | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
405
+ | Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
406
+ | LongContext | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
407
+ | Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
408
+ | | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
409
+ | | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
410
+
 
411
  - 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表使用深度思考模式进行评测),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
412
  - 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
413
 
 
435
  model_dir = "internlm/internlm3-8b-instruct"
436
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
437
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
438
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
439
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
440
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
441
  # pip install -U bitsandbytes
 
450
  {"role": "system", "content": system_prompt},
451
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
452
  ]
453
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
454
 
455
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
456
 
 
459
  ]
460
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
461
  print(prompt)
462
+ response = tokenizer.batch_decode(generated_ids)[0]
463
  print(response)
464
  ```
465
 
 
507
 
508
  ##### Ollama 推理
509
 
510
+ TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511
 
512
  ##### vLLM 推理
513
 
514
+ 我们还在推动PR(https://github.com/vllm-project/vllm/pull/12037) 合入vllm,现在请使用以下PR链接手动安装
515
 
516
+ ```python
517
+ git clone https://github.com/RunningLeon/vllm.git
518
+ pip install -e .
519
  ```
520
 
521
  推理代码
 
616
  model_dir = "internlm/internlm3-8b-instruct"
617
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
618
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
619
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
620
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
621
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
622
  # pip install -U bitsandbytes
 
628
  {"role": "system", "content": thinking_system_prompt},
629
  {"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
630
  ]
631
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
632
 
633
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
634
 
 
637
  ]
638
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
639
  print(prompt)
640
+ response = tokenizer.batch_decode(generated_ids)[0]
641
  print(response)
642
  ```
643
  ##### LMDeploy 推理
 
667
 
668
  ##### Ollama 推理
669
 
670
+ TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671
 
672
  ##### vLLM 推理
673
 
674
+ 我们还在推动PR(https://github.com/vllm-project/vllm/pull/12037) 合入vllm,现在请使用以下PR链接手动安装
675
 
676
+ ```python
677
+ git clone https://github.com/RunningLeon/vllm.git
678
+ pip install -e .
679
  ```
680
 
681
  推理代码
 
725
  archivePrefix={arXiv},
726
  primaryClass={cs.CL}
727
  }
728
+ ```
model-00001-of-00002.safetensors → model-00001-of-00004.safetensors RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9a18eb700cd28f03c0745ac75ab53ead514cfa703fabb82c61a37b85cb593ff4
3
- size 9928388896
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8a1b8c2aecbe72356241a5b5e861ba029f4e61189c4c0a9ca9821e66679f6f5
3
+ size 9999626944
model-00002-of-00002.safetensors → model-00002-of-00004.safetensors RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e324110df616ca5190f20469528f13421476f38f0e2597dac4d9ee0bdcede797
3
- size 7680144544
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eefc1671b07fe3aefb5011f381eb4524c27595cab06e56fbeac256ebe24b18d
3
+ size 9857121648
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:536775814f5fd4327c11ae5dcdab5f537ab733aae90df9ef425ea06984802fe5
3
+ size 9857121632
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b47cfd723371ff07d585cc48355c16f15b03a48281f7933ecf339a299d64b3
3
+ size 5503145608
model.safetensors.index.json CHANGED
@@ -1,442 +1,442 @@
1
  {
2
  "metadata": {
3
- "total_size": 17608482816
4
  },
5
  "weight_map": {
6
- "lm_head.weight": "model-00002-of-00002.safetensors",
7
- "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
- "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
- "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
- "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
- "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
- "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
- "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
- "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
- "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
- "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
- "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
- "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
- "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
- "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
- "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
- "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
- "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
- "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
- "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
- "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
- "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
- "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
- "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
- "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
- "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
- "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
- "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
- "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
- "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
- "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
- "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
- "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
- "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
- "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
- "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
- "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
- "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
- "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
- "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
- "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
- "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
- "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
- "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
- "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
- "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
- "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
- "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
- "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
- "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
- "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
- "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
- "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
- "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
- "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
- "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
- "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
- "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
- "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
- "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
- "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
- "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
- "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
- "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
- "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
- "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
- "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
- "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
- "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
- "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
- "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
- "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
- "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
- "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
- "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
- "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
- "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
- "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
- "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
- "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
- "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
- "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
- "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
- "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
- "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
- "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
- "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
- "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
- "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
- "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
- "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
- "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
- "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
- "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
- "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
- "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
- "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
- "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
- "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
- "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
- "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
- "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
- "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
- "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
- "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
- "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
- "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
- "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
- "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
- "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
- "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
- "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
- "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
- "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
- "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
- "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
- "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
- "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
- "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
- "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
126
- "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
127
- "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
128
- "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
129
- "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
130
- "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
131
- "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
132
- "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
133
- "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
134
- "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
135
- "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
136
- "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
137
- "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
138
- "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
139
- "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
140
- "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
141
- "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
142
- "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
143
- "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
144
- "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
145
- "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
146
- "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
147
- "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
148
- "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
149
- "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
150
- "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
151
- "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
- "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
- "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
- "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
- "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
- "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
- "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
- "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
- "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
160
- "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
161
- "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
162
- "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
163
- "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
164
- "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
165
- "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
166
- "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
167
- "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
168
- "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
169
- "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
170
- "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
- "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
- "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
173
- "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
174
- "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
175
- "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
176
- "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
177
- "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
178
- "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
179
- "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
180
- "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
181
- "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
182
- "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
183
- "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
184
- "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
185
- "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
186
- "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
187
- "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
- "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
- "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
- "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
- "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
- "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
- "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
- "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
- "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
196
- "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
197
- "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
198
- "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
199
- "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
200
- "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
201
- "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
202
- "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
203
- "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
204
- "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
205
- "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
206
- "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
207
- "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
208
- "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
209
- "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
210
- "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
211
- "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
212
- "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
213
- "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
214
- "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
215
- "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
- "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
- "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
- "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
- "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
- "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
- "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
- "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
- "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
- "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
- "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
- "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
- "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
- "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
- "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
- "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
- "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
232
- "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
233
- "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
234
- "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
235
- "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
236
- "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
237
- "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
238
- "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
239
- "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
240
- "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
241
- "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
242
- "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
243
- "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
244
- "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
245
- "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
246
- "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
247
- "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
248
- "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
249
- "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
250
- "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
251
- "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
252
- "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
253
- "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
254
- "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
255
- "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
256
- "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
257
- "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
258
- "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
259
- "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
- "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
- "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
- "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
- "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
- "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
- "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
266
- "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
267
- "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
268
- "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
269
- "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
270
- "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
271
- "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
272
- "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
273
- "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
274
- "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
275
- "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
276
- "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
277
- "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
278
- "model.layers.36.input_layernorm.weight": "model-00002-of-00002.safetensors",
279
- "model.layers.36.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
280
- "model.layers.36.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
281
- "model.layers.36.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
282
- "model.layers.36.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
283
- "model.layers.36.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
284
- "model.layers.36.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
285
- "model.layers.36.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
286
- "model.layers.36.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
287
- "model.layers.37.input_layernorm.weight": "model-00002-of-00002.safetensors",
288
- "model.layers.37.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
289
- "model.layers.37.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
290
- "model.layers.37.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
291
- "model.layers.37.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
292
- "model.layers.37.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
293
- "model.layers.37.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
294
- "model.layers.37.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
295
- "model.layers.37.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
296
- "model.layers.38.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
- "model.layers.38.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
- "model.layers.38.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
- "model.layers.38.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
- "model.layers.38.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
- "model.layers.38.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
- "model.layers.38.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
- "model.layers.38.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
304
- "model.layers.38.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
305
- "model.layers.39.input_layernorm.weight": "model-00002-of-00002.safetensors",
306
- "model.layers.39.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
307
- "model.layers.39.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
308
- "model.layers.39.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
309
- "model.layers.39.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
310
- "model.layers.39.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
311
- "model.layers.39.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
312
- "model.layers.39.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
313
- "model.layers.39.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
314
- "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
315
- "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
316
- "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
317
- "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
318
- "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
319
- "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
320
- "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
321
- "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
322
- "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
323
- "model.layers.40.input_layernorm.weight": "model-00002-of-00002.safetensors",
324
- "model.layers.40.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
325
- "model.layers.40.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
326
- "model.layers.40.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
327
- "model.layers.40.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
328
- "model.layers.40.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
329
- "model.layers.40.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
330
- "model.layers.40.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
331
- "model.layers.40.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
- "model.layers.41.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
- "model.layers.41.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
- "model.layers.41.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
- "model.layers.41.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
- "model.layers.41.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
- "model.layers.41.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
- "model.layers.41.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
- "model.layers.41.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
340
- "model.layers.41.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
341
- "model.layers.42.input_layernorm.weight": "model-00002-of-00002.safetensors",
342
- "model.layers.42.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
343
- "model.layers.42.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
344
- "model.layers.42.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
345
- "model.layers.42.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
346
- "model.layers.42.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
347
- "model.layers.42.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
348
- "model.layers.42.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
349
- "model.layers.42.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
350
- "model.layers.43.input_layernorm.weight": "model-00002-of-00002.safetensors",
351
- "model.layers.43.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
352
- "model.layers.43.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
353
- "model.layers.43.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
354
- "model.layers.43.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
355
- "model.layers.43.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
356
- "model.layers.43.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
357
- "model.layers.43.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
358
- "model.layers.43.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
359
- "model.layers.44.input_layernorm.weight": "model-00002-of-00002.safetensors",
360
- "model.layers.44.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
361
- "model.layers.44.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
362
- "model.layers.44.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
363
- "model.layers.44.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
364
- "model.layers.44.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
365
- "model.layers.44.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
366
- "model.layers.44.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
367
- "model.layers.44.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
- "model.layers.45.input_layernorm.weight": "model-00002-of-00002.safetensors",
369
- "model.layers.45.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
370
- "model.layers.45.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
371
- "model.layers.45.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
372
- "model.layers.45.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
373
- "model.layers.45.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
374
- "model.layers.45.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
375
- "model.layers.45.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
376
- "model.layers.45.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
377
- "model.layers.46.input_layernorm.weight": "model-00002-of-00002.safetensors",
378
- "model.layers.46.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
379
- "model.layers.46.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
380
- "model.layers.46.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
381
- "model.layers.46.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
382
- "model.layers.46.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
383
- "model.layers.46.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
384
- "model.layers.46.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
385
- "model.layers.46.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
386
- "model.layers.47.input_layernorm.weight": "model-00002-of-00002.safetensors",
387
- "model.layers.47.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
388
- "model.layers.47.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
389
- "model.layers.47.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
390
- "model.layers.47.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
391
- "model.layers.47.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
392
- "model.layers.47.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
393
- "model.layers.47.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
394
- "model.layers.47.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
395
- "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
396
- "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
397
- "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
398
- "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
399
- "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
400
- "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
401
- "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
402
- "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
403
- "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
- "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
- "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
- "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
- "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
- "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
- "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
- "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
- "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
412
- "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
413
- "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
414
- "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
415
- "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
416
- "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
417
- "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
418
- "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
419
- "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
420
- "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
421
- "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
422
- "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
423
- "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
424
- "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
425
- "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
426
- "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
427
- "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
428
- "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
429
- "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
430
- "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
431
- "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
432
- "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
433
- "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
434
- "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
435
- "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
436
- "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
437
- "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
438
- "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
439
- "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
- "model.norm.weight": "model-00002-of-00002.safetensors"
441
  }
442
  }
 
1
  {
2
  "metadata": {
3
+ "total_size": 35216965632
4
  },
5
  "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00003-of-00004.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00003-of-00004.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
323
+ "model.layers.40.input_layernorm.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.40.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
325
+ "model.layers.40.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
326
+ "model.layers.40.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
327
+ "model.layers.40.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
328
+ "model.layers.40.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
329
+ "model.layers.40.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
330
+ "model.layers.40.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
331
+ "model.layers.40.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
332
+ "model.layers.41.input_layernorm.weight": "model-00003-of-00004.safetensors",
333
+ "model.layers.41.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
334
+ "model.layers.41.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
335
+ "model.layers.41.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
336
+ "model.layers.41.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
337
+ "model.layers.41.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
338
+ "model.layers.41.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
339
+ "model.layers.41.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
340
+ "model.layers.41.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
341
+ "model.layers.42.input_layernorm.weight": "model-00004-of-00004.safetensors",
342
+ "model.layers.42.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
343
+ "model.layers.42.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
344
+ "model.layers.42.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
345
+ "model.layers.42.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
346
+ "model.layers.42.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
347
+ "model.layers.42.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
348
+ "model.layers.42.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
349
+ "model.layers.42.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
350
+ "model.layers.43.input_layernorm.weight": "model-00004-of-00004.safetensors",
351
+ "model.layers.43.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
352
+ "model.layers.43.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
353
+ "model.layers.43.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
354
+ "model.layers.43.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
355
+ "model.layers.43.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
356
+ "model.layers.43.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
357
+ "model.layers.43.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
358
+ "model.layers.43.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
359
+ "model.layers.44.input_layernorm.weight": "model-00004-of-00004.safetensors",
360
+ "model.layers.44.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
361
+ "model.layers.44.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
362
+ "model.layers.44.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
363
+ "model.layers.44.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
364
+ "model.layers.44.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
365
+ "model.layers.44.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
366
+ "model.layers.44.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
367
+ "model.layers.44.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
368
+ "model.layers.45.input_layernorm.weight": "model-00004-of-00004.safetensors",
369
+ "model.layers.45.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
370
+ "model.layers.45.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
371
+ "model.layers.45.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
372
+ "model.layers.45.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
373
+ "model.layers.45.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
374
+ "model.layers.45.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
375
+ "model.layers.45.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
376
+ "model.layers.45.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
377
+ "model.layers.46.input_layernorm.weight": "model-00004-of-00004.safetensors",
378
+ "model.layers.46.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
379
+ "model.layers.46.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
380
+ "model.layers.46.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
381
+ "model.layers.46.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
382
+ "model.layers.46.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
383
+ "model.layers.46.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
384
+ "model.layers.46.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
385
+ "model.layers.46.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
386
+ "model.layers.47.input_layernorm.weight": "model-00004-of-00004.safetensors",
387
+ "model.layers.47.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
388
+ "model.layers.47.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
389
+ "model.layers.47.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
390
+ "model.layers.47.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
391
+ "model.layers.47.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
392
+ "model.layers.47.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
393
+ "model.layers.47.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
394
+ "model.layers.47.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
395
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
397
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
398
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
399
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
400
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
401
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
402
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
403
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
404
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
405
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
406
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
407
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
408
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
409
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
410
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
411
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
412
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
413
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
414
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
415
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
416
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
417
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
418
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
419
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
420
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
421
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
422
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
423
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
424
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
425
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
426
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
427
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
428
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
429
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
430
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
431
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
432
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
433
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
434
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
435
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
436
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
437
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
438
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
440
+ "model.norm.weight": "model-00004-of-00004.safetensors"
441
  }
442
  }