Upload README.md
#2
by
haijunlv
- opened
README.md
CHANGED
@@ -86,7 +86,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
86 |
model_dir = "internlm/internlm3-8b-instruct"
|
87 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
88 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
89 |
-
|
90 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
91 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
92 |
# pip install -U bitsandbytes
|
@@ -108,6 +108,8 @@ generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=
|
|
108 |
generated_ids = [
|
109 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
110 |
]
|
|
|
|
|
111 |
response = tokenizer.batch_decode(generated_ids)[0]
|
112 |
print(response)
|
113 |
```
|
@@ -153,6 +155,10 @@ Find more details in the [LMDeploy documentation](https://lmdeploy.readthedocs.i
|
|
153 |
|
154 |
|
155 |
|
|
|
|
|
|
|
|
|
156 |
#### vLLM inference
|
157 |
|
158 |
We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
|
@@ -280,6 +286,8 @@ generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
|
|
280 |
generated_ids = [
|
281 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
282 |
]
|
|
|
|
|
283 |
response = tokenizer.batch_decode(generated_ids)[0]
|
284 |
print(response)
|
285 |
```
|
@@ -308,6 +316,10 @@ response = pipe(messages, gen_config=GenerationConfig(max_new_tokens=2048))
|
|
308 |
print(response)
|
309 |
```
|
310 |
|
|
|
|
|
|
|
|
|
311 |
#### vLLM inference
|
312 |
|
313 |
We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
|
@@ -345,7 +357,7 @@ print(outputs)
|
|
345 |
|
346 |
## Open Source License
|
347 |
|
348 |
-
|
349 |
|
350 |
## Citation
|
351 |
|
@@ -369,7 +381,7 @@ The code is licensed under Apache-2.0, while model weights are fully open for ac
|
|
369 |
InternLM3,即书生·浦语大模型第3代,开源了80亿参数,面向通用使用与高阶推理的指令模型(InternLM3-8B-Instruct)。模型具备以下特点:
|
370 |
|
371 |
- **更低的代价取得更高的性能**:
|
372 |
-
在推理、知识类任务上取得同量级最优性能,超过Llama3.1-8B和Qwen2.5-7B
|
373 |
- **深度思考能力**:
|
374 |
InternLM3支持通过长思维链求解复杂推理任务的深度思考模式,同时还兼顾了用户体验更流畅的通用回复模式。
|
375 |
|
@@ -423,7 +435,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
423 |
model_dir = "internlm/internlm3-8b-instruct"
|
424 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
425 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
426 |
-
|
427 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
428 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
429 |
# pip install -U bitsandbytes
|
@@ -445,6 +457,8 @@ generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=
|
|
445 |
generated_ids = [
|
446 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
447 |
]
|
|
|
|
|
448 |
response = tokenizer.batch_decode(generated_ids)[0]
|
449 |
print(response)
|
450 |
```
|
@@ -491,7 +505,12 @@ curl http://localhost:23333/v1/chat/completions \
|
|
491 |
|
492 |
|
493 |
|
|
|
|
|
|
|
|
|
494 |
##### vLLM 推理
|
|
|
495 |
我们还在推动PR(https://github.com/vllm-project/vllm/pull/12037) 合入vllm,现在请使用以下PR链接手动安装
|
496 |
|
497 |
```python
|
@@ -616,6 +635,8 @@ generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
|
|
616 |
generated_ids = [
|
617 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
618 |
]
|
|
|
|
|
619 |
response = tokenizer.batch_decode(generated_ids)[0]
|
620 |
print(response)
|
621 |
```
|
@@ -644,6 +665,10 @@ response = pipe(messages, gen_config=GenerationConfig(max_new_tokens=2048))
|
|
644 |
print(response)
|
645 |
```
|
646 |
|
|
|
|
|
|
|
|
|
647 |
##### vLLM 推理
|
648 |
|
649 |
我们还在推动PR(https://github.com/vllm-project/vllm/pull/12037) 合入vllm,现在请使用以下PR链接手动安装
|
@@ -687,7 +712,7 @@ print(outputs)
|
|
687 |
|
688 |
## 开源许可证
|
689 |
|
690 |
-
|
691 |
|
692 |
## 引用
|
693 |
|
|
|
86 |
model_dir = "internlm/internlm3-8b-instruct"
|
87 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
88 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
89 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
|
90 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
91 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
92 |
# pip install -U bitsandbytes
|
|
|
108 |
generated_ids = [
|
109 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
110 |
]
|
111 |
+
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
112 |
+
print(prompt)
|
113 |
response = tokenizer.batch_decode(generated_ids)[0]
|
114 |
print(response)
|
115 |
```
|
|
|
155 |
|
156 |
|
157 |
|
158 |
+
#### Ollama inference
|
159 |
+
|
160 |
+
TODO
|
161 |
+
|
162 |
#### vLLM inference
|
163 |
|
164 |
We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
|
|
|
286 |
generated_ids = [
|
287 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
288 |
]
|
289 |
+
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
290 |
+
print(prompt)
|
291 |
response = tokenizer.batch_decode(generated_ids)[0]
|
292 |
print(response)
|
293 |
```
|
|
|
316 |
print(response)
|
317 |
```
|
318 |
|
319 |
+
#### Ollama inference
|
320 |
+
|
321 |
+
TODO
|
322 |
+
|
323 |
#### vLLM inference
|
324 |
|
325 |
We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
|
|
|
357 |
|
358 |
## Open Source License
|
359 |
|
360 |
+
Code and model weights are licensed under Apache-2.0.
|
361 |
|
362 |
## Citation
|
363 |
|
|
|
381 |
InternLM3,即书生·浦语大模型第3代,开源了80亿参数,面向通用使用与高阶推理的指令模型(InternLM3-8B-Instruct)。模型具备以下特点:
|
382 |
|
383 |
- **更低的代价取得更高的性能**:
|
384 |
+
在推理、知识类任务上取得同量级最优性能,超过Llama3.1-8B和Qwen2.5-7B。值得关注的是InternLM3只用了4万亿词元进行训练,对比同级别模型训练成本节省75%以上。
|
385 |
- **深度思考能力**:
|
386 |
InternLM3支持通过长思维链求解复杂推理任务的深度思考模式,同时还兼顾了用户体验更流畅的通用回复模式。
|
387 |
|
|
|
435 |
model_dir = "internlm/internlm3-8b-instruct"
|
436 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
437 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
438 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
|
439 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
440 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
441 |
# pip install -U bitsandbytes
|
|
|
457 |
generated_ids = [
|
458 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
459 |
]
|
460 |
+
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
461 |
+
print(prompt)
|
462 |
response = tokenizer.batch_decode(generated_ids)[0]
|
463 |
print(response)
|
464 |
```
|
|
|
505 |
|
506 |
|
507 |
|
508 |
+
##### Ollama 推理
|
509 |
+
|
510 |
+
TODO
|
511 |
+
|
512 |
##### vLLM 推理
|
513 |
+
|
514 |
我们还在推动PR(https://github.com/vllm-project/vllm/pull/12037) 合入vllm,现在请使用以下PR链接手动安装
|
515 |
|
516 |
```python
|
|
|
635 |
generated_ids = [
|
636 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
637 |
]
|
638 |
+
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
639 |
+
print(prompt)
|
640 |
response = tokenizer.batch_decode(generated_ids)[0]
|
641 |
print(response)
|
642 |
```
|
|
|
665 |
print(response)
|
666 |
```
|
667 |
|
668 |
+
##### Ollama 推理
|
669 |
+
|
670 |
+
TODO
|
671 |
+
|
672 |
##### vLLM 推理
|
673 |
|
674 |
我们还在推动PR(https://github.com/vllm-project/vllm/pull/12037) 合入vllm,现在请使用以下PR链接手动安装
|
|
|
712 |
|
713 |
## 开源许可证
|
714 |
|
715 |
+
本仓库的代码和权重依照 Apache-2.0 协议开源。
|
716 |
|
717 |
## 引用
|
718 |
|