Upload README.md
#15
by
haijunlv
- opened
README.md
CHANGED
@@ -48,25 +48,26 @@ InternLM3 supports both the deep thinking mode for solving complicated reasoning
|
|
48 |
|
49 |
We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://rank.opencompass.org.cn) for more evaluation results.
|
50 |
|
51 |
-
| Benchmark
|
52 |
-
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- |
|
53 |
-
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0
|
54 |
-
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7
|
55 |
-
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1
|
56 |
-
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9
|
57 |
-
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2
|
58 |
-
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5
|
59 |
-
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2
|
60 |
-
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0
|
61 |
-
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3
|
62 |
-
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8
|
63 |
-
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6
|
64 |
-
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7
|
65 |
-
| Long Context | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7
|
66 |
-
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7
|
67 |
-
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3
|
68 |
-
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87
|
69 |
-
|
|
|
70 |
- The evaluation results were obtained from [OpenCompass](https://github.com/internLM/OpenCompass/) (some data marked with *, which means evaluating with Thinking Mode), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
|
71 |
- The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
|
72 |
|
@@ -470,25 +471,26 @@ InternLM3支持通过长思维链求解复杂推理任务的深度思考模式
|
|
470 |
|
471 |
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。
|
472 |
|
473 |
-
| 评测集\模型
|
474 |
-
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- |
|
475 |
-
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0
|
476 |
-
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7
|
477 |
-
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1
|
478 |
-
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9
|
479 |
-
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2
|
480 |
-
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5
|
481 |
-
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2
|
482 |
-
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0
|
483 |
-
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3
|
484 |
-
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8
|
485 |
-
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6
|
486 |
-
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7
|
487 |
-
| LongContext | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7
|
488 |
-
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7
|
489 |
-
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3
|
490 |
-
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87
|
491 |
-
|
|
|
492 |
- 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表使用深度思考模式进行评测),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
|
493 |
- 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
|
494 |
|
|
|
48 |
|
49 |
We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://rank.opencompass.org.cn) for more evaluation results.
|
50 |
|
51 |
+
| | Benchmark | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(closed source) |
|
52 |
+
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | -------------------------- |
|
53 |
+
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
|
54 |
+
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
|
55 |
+
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
|
56 |
+
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
|
57 |
+
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
|
58 |
+
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
|
59 |
+
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
|
60 |
+
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
|
61 |
+
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
|
62 |
+
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
|
63 |
+
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
|
64 |
+
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
|
65 |
+
| Long Context | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
|
66 |
+
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
|
67 |
+
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
|
68 |
+
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
|
69 |
+
|
70 |
+
- Values marked in bold indicate the **highest** in open source models
|
71 |
- The evaluation results were obtained from [OpenCompass](https://github.com/internLM/OpenCompass/) (some data marked with *, which means evaluating with Thinking Mode), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
|
72 |
- The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
|
73 |
|
|
|
471 |
|
472 |
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。
|
473 |
|
474 |
+
| | 评测集\模型 | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(闭源) |
|
475 |
+
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ----------------- |
|
476 |
+
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
|
477 |
+
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
|
478 |
+
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
|
479 |
+
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
|
480 |
+
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
|
481 |
+
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
|
482 |
+
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
|
483 |
+
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
|
484 |
+
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
|
485 |
+
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
|
486 |
+
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
|
487 |
+
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
|
488 |
+
| LongContext | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
|
489 |
+
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
|
490 |
+
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
|
491 |
+
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
|
492 |
+
|
493 |
+
- 表中标粗的数值表示在对比的开源模型中的最高值。
|
494 |
- 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表使用深度思考模式进行评测),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
|
495 |
- 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
|
496 |
|