unsubscribe commited on
Commit
7afde34
·
verified ·
1 Parent(s): 9d42fce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -434
README.md CHANGED
@@ -91,440 +91,6 @@ Code and model weights are licensed under Apache-2.0.
91
 
92
  ## Citation
93
 
94
- ```
95
- @misc{cai2024internlm2,
96
- title={InternLM2 Technical Report},
97
- author={Zheng Cai and Maosong Cao and Haojiong Chen and Kai Chen and Keyu Chen and Xin Chen and Xun Chen and Zehui Chen and Zhi Chen and Pei Chu and Xiaoyi Dong and Haodong Duan and Qi Fan and Zhaoye Fei and Yang Gao and Jiaye Ge and Chenya Gu and Yuzhe Gu and Tao Gui and Aijia Guo and Qipeng Guo and Conghui He and Yingfan Hu and Ting Huang and Tao Jiang and Penglong Jiao and Zhenjiang Jin and Zhikai Lei and Jiaxing Li and Jingwen Li and Linyang Li and Shuaibin Li and Wei Li and Yining Li and Hongwei Liu and Jiangning Liu and Jiawei Hong and Kaiwen Liu and Kuikun Liu and Xiaoran Liu and Chengqi Lv and Haijun Lv and Kai Lv and Li Ma and Runyuan Ma and Zerun Ma and Wenchang Ning and Linke Ouyang and Jiantao Qiu and Yuan Qu and Fukai Shang and Yunfan Shao and Demin Song and Zifan Song and Zhihao Sui and Peng Sun and Yu Sun and Huanze Tang and Bin Wang and Guoteng Wang and Jiaqi Wang and Jiayu Wang and Rui Wang and Yudong Wang and Ziyi Wang and Xingjian Wei and Qizhen Weng and Fan Wu and Yingtong Xiong and Chao Xu and Ruiliang Xu and Hang Yan and Yirong Yan and Xiaogui Yang and Haochen Ye and Huaiyuan Ying and Jia Yu and Jing Yu and Yuhang Zang and Chuyu Zhang and Li Zhang and Pan Zhang and Peng Zhang and Ruijie Zhang and Shuo Zhang and Songyang Zhang and Wenjian Zhang and Wenwei Zhang and Xingcheng Zhang and Xinyue Zhang and Hui Zhao and Qian Zhao and Xiaomeng Zhao and Fengzhe Zhou and Zaida Zhou and Jingming Zhuo and Yicheng Zou and Xipeng Qiu and Yu Qiao and Dahua Lin},
98
- year={2024},
99
- eprint={2403.17297},
100
- archivePrefix={arXiv},
101
- primaryClass={cs.CL}
102
- }
103
- ```
104
-
105
-
106
-
107
- ## 简介
108
-
109
- ### InternLM3-8B-Instruct
110
-
111
- InternLM3,即书生·浦语大模型第3代,开源了80亿参数,面向通用使用与高阶推理的指令模型(InternLM3-8B-Instruct)。模型具备以下特点:
112
-
113
- - **更低的代价取得更高的性能**:
114
- 在推理、知识类任务上取得同量级最优性能,超过Llama3.1-8B和Qwen2.5-7B。值得关注的是InternLM3只用了4万亿词元进行训练,对比同级别模型训练成本节省75%以上。
115
- - **深度思考能力**:
116
- InternLM3支持通过长思维链求解复杂推理任务的深度思考模式,同时还兼顾了用户体验更流畅的通用回复模式。
117
-
118
- #### 性能评测
119
-
120
- 我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。
121
-
122
- | | 评测集\模型 | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(闭源) |
123
- | ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ----------------- |
124
- | General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
125
- | | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
126
- | | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
127
- | Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
128
- | | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
129
- | | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
130
- | | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
131
- | MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
132
- | | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
133
- | Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
134
- | | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
135
- | Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
136
- | LongContext | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
137
- | Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
138
- | | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
139
- | | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
140
-
141
- - 表中标粗的数值表示在对比的开源模型中的最高值。
142
- - 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表使用深度思考模式进行评测),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
143
- - 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
144
-
145
- **局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
146
-
147
- #### 依赖
148
-
149
- ```python
150
- transformers >= 4.48
151
- ```
152
-
153
-
154
-
155
-
156
- #### 常规对话模式
157
-
158
- ##### Transformers 推理
159
-
160
- 通过以下的代码加载 InternLM3 8B Instruct 模型
161
-
162
- ```python
163
- import torch
164
- from transformers import AutoTokenizer, AutoModelForCausalLM
165
-
166
- model_dir = "internlm/internlm3-8b-instruct"
167
- tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
168
- # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
169
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
170
- # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
171
- # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
172
- # pip install -U bitsandbytes
173
- # 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
174
- # 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
175
- model = model.eval()
176
-
177
- system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
178
- - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
179
- - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
180
- messages = [
181
- {"role": "system", "content": system_prompt},
182
- {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
183
- ]
184
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
185
-
186
- generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
187
-
188
- generated_ids = [
189
- output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
190
- ]
191
- prompt = tokenizer.batch_decode(tokenized_chat)[0]
192
- print(prompt)
193
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
194
- print(response)
195
- ```
196
-
197
- ##### LMDeploy 推理
198
-
199
- LMDeploy 是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。
200
-
201
- ```bash
202
- pip install lmdeploy
203
- ```
204
-
205
- 你可以使用以下 python 代码进行本地批量推理:
206
-
207
- ```python
208
- import lmdeploy
209
- model_dir = "internlm/internlm3-8b-instruct"
210
- pipe = lmdeploy.pipeline(model_dir)
211
- response = pipe(["Please tell me five scenic spots in Shanghai"])
212
- print(response)
213
-
214
- ```
215
-
216
- 或者你可以使用以下命令启动兼容 OpenAI API 的服务:
217
-
218
- ```bash
219
- lmdeploy serve api_server internlm/internlm3-8b-instruct --model-name internlm3-8b-instruct --server-port 23333
220
- ```
221
-
222
- 然后你可以向服务端发起一个聊天请求:
223
-
224
- ```bash
225
- curl http://localhost:23333/v1/chat/completions \
226
- -H "Content-Type: application/json" \
227
- -d '{
228
- "model": "internlm3-8b-instruct",
229
- "messages": [
230
- {"role": "user", "content": "介绍一下深度学习。"}
231
- ]
232
- }'
233
- ```
234
-
235
- 更多信息请查看 [LMDeploy 文档](https://lmdeploy.readthedocs.io/en/latest/)
236
-
237
-
238
-
239
- ##### Ollama 推理
240
-
241
- 准备工作
242
-
243
- ```python
244
- # install ollama
245
- curl -fsSL https://ollama.com/install.sh | sh
246
- # fetch 模型
247
- ollama pull internlm/internlm3-8b-instruct
248
- # install python库
249
- pip install ollama
250
- ```
251
-
252
- 推理代码
253
-
254
- ```python
255
- import ollama
256
-
257
- system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
258
- - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
259
- - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
260
-
261
- messages = [
262
- {
263
- "role": "system",
264
- "content": system_prompt,
265
- },
266
- {
267
- "role": "user",
268
- "content": "Please tell me five scenic spots in Shanghai"
269
- },
270
- ]
271
-
272
- stream = ollama.chat(
273
- model='internlm/internlm3-8b-instruct',
274
- messages=messages,
275
- stream=True,
276
- )
277
-
278
- for chunk in stream:
279
- print(chunk['message']['content'], end='', flush=True)
280
- ```
281
-
282
-
283
- ####
284
-
285
- ##### vLLM 推理
286
-
287
- 参考[文档](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) 安装 vllm 最新代码
288
-
289
- ```bash
290
- pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
291
- ```
292
-
293
- 推理代码
294
-
295
- ```python
296
- from vllm import LLM, SamplingParams
297
-
298
- llm = LLM(model="internlm/internlm3-8b-instruct")
299
- sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
300
-
301
- system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
302
- - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
303
- - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
304
-
305
- prompts = [
306
- {
307
- "role": "system",
308
- "content": system_prompt,
309
- },
310
- {
311
- "role": "user",
312
- "content": "Please tell me five scenic spots in Shanghai"
313
- },
314
- ]
315
- outputs = llm.chat(prompts,
316
- sampling_params=sampling_params,
317
- use_tqdm=False)
318
- print(outputs)
319
- ```
320
-
321
- #### 深度思考模式
322
-
323
- ##### 深度思考 Demo
324
-
325
- <img src="https://github.com/InternLM/InternLM/blob/017ba7446d20ecc3b9ab8e7b66cc034500868ab4/assets/solve_puzzle.png?raw=true" width="400"/>
326
-
327
-
328
-
329
-
330
-
331
- ##### 深度思考 system prompt
332
-
333
- ```python
334
- thinking_system_prompt = """You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
335
- ## Deep Understanding
336
- Take time to fully comprehend the problem before attempting a solution. Consider:
337
- - What is the real question being asked?
338
- - What are the given conditions and what do they tell us?
339
- - Are there any special restrictions or assumptions?
340
- - Which information is crucial and which is supplementary?
341
- ## Multi-angle Analysis
342
- Before solving, conduct thorough analysis:
343
- - What mathematical concepts and properties are involved?
344
- - Can you recall similar classic problems or solution methods?
345
- - Would diagrams or tables help visualize the problem?
346
- - Are there special cases that need separate consideration?
347
- ## Systematic Thinking
348
- Plan your solution path:
349
- - Propose multiple possible approaches
350
- - Analyze the feasibility and merits of each method
351
- - Choose the most appropriate method and explain why
352
- - Break complex problems into smaller, manageable steps
353
- ## Rigorous Proof
354
- During the solution process:
355
- - Provide solid justification for each step
356
- - Include detailed proofs for key conclusions
357
- - Pay attention to logical connections
358
- - Be vigilant about potential oversights
359
- ## Repeated Verification
360
- After completing your solution:
361
- - Verify your results satisfy all conditions
362
- - Check for overlooked special cases
363
- - Consider if the solution can be optimized or simplified
364
- - Review your reasoning process
365
- Remember:
366
- 1. Take time to think thoroughly rather than rushing to an answer
367
- 2. Rigorously prove each key conclusion
368
- 3. Keep an open mind and try different approaches
369
- 4. Summarize valuable problem-solving methods
370
- 5. Maintain healthy skepticism and verify multiple times
371
- Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
372
- When you're ready, present your complete solution with:
373
- - Clear problem understanding
374
- - Detailed solution process
375
- - Key insights
376
- - Thorough verification
377
- Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
378
- """
379
- ```
380
-
381
- ##### Transformers 推理
382
-
383
-
384
- ```python
385
- import torch
386
- from transformers import AutoTokenizer, AutoModelForCausalLM
387
-
388
- model_dir = "internlm/internlm3-8b-instruct"
389
- tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
390
- # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
391
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
392
- # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
393
- # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
394
- # pip install -U bitsandbytes
395
- # 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
396
- # 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
397
- model = model.eval()
398
-
399
- messages = [
400
- {"role": "system", "content": thinking_system_prompt},
401
- {"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
402
- ]
403
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
404
-
405
- generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
406
-
407
- generated_ids = [
408
- output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
409
- ]
410
- prompt = tokenizer.batch_decode(tokenized_chat)[0]
411
- print(prompt)
412
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
413
- print(response)
414
- ```
415
- ##### LMDeploy 推理
416
-
417
- LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
418
-
419
- ```bash
420
- pip install lmdeploy
421
- ```
422
-
423
- You can run batch inference locally with the following python code:
424
-
425
- ```python
426
- from lmdeploy import pipeline, GenerationConfig, ChatTemplateConfig
427
- model_dir = "internlm/internlm3-8b-instruct"
428
- chat_template_config = ChatTemplateConfig(model_name='internlm3')
429
- pipe = pipeline(model_dir, chat_template_config=chat_template_config)
430
-
431
- messages = [
432
- {"role": "system", "content": thinking_system_prompt},
433
- {"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
434
- ]
435
-
436
- response = pipe(messages, gen_config=GenerationConfig(max_new_tokens=2048))
437
- print(response)
438
- ```
439
-
440
- ##### Ollama 推理
441
-
442
- 准备工作
443
-
444
- ```python
445
- # install ollama
446
- curl -fsSL https://ollama.com/install.sh | sh
447
- # fetch 模型
448
- ollama pull internlm/internlm3-8b-instruct
449
- # install python库
450
- pip install ollama
451
- ```
452
-
453
- inference code,
454
-
455
- ```python
456
- import ollama
457
-
458
- messages = [
459
- {
460
- "role": "system",
461
- "content": thinking_system_prompt,
462
- },
463
- {
464
- "role": "user",
465
- "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
466
- },
467
- ]
468
-
469
- stream = ollama.chat(
470
- model='internlm/internlm3-8b-instruct',
471
- messages=messages,
472
- stream=True,
473
- )
474
-
475
- for chunk in stream:
476
- print(chunk['message']['content'], end='', flush=True)
477
- ```
478
-
479
-
480
- ####
481
-
482
- ##### vLLM 推理
483
-
484
- 参考[文档](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) 安装 vllm 最新代码
485
-
486
- ```bash
487
- pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
488
- ```
489
-
490
- 推理代码
491
-
492
- ```python
493
- from vllm import LLM, SamplingParams
494
-
495
- llm = LLM(model="internlm/internlm3-8b-instruct")
496
- sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8, max_tokens=8192)
497
-
498
- prompts = [
499
- {
500
- "role": "system",
501
- "content": thinking_system_prompt,
502
- },
503
- {
504
- "role": "user",
505
- "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"
506
- },
507
- ]
508
- outputs = llm.chat(prompts,
509
- sampling_params=sampling_params,
510
- use_tqdm=False)
511
- print(outputs)
512
- ```
513
-
514
-
515
-
516
-
517
-
518
-
519
-
520
-
521
-
522
- ## 开源许可证
523
-
524
- 本仓库的代码和权重依照 Apache-2.0 协议开源。
525
-
526
- ## 引用
527
-
528
  ```
529
  @misc{cai2024internlm2,
530
  title={InternLM2 Technical Report},
 
91
 
92
  ## Citation
93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  ```
95
  @misc{cai2024internlm2,
96
  title={InternLM2 Technical Report},