unsubscribe
commited on
Upload folder using huggingface_hub
Browse files- README.md +537 -0
- config.json +42 -0
- configuration_internlm3.py +197 -0
- generation_config.json +9 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +778 -0
- special_tokens_map.json +54 -0
- tokenization_internlm3.py +294 -0
- tokenizer.model +3 -0
- tokenizer_config.json +249 -0
README.md
ADDED
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
---
|
5 |
+
# InternLM
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
<div align="center">
|
10 |
+
<img src="https://github.com/InternLM/InternLM/assets/22529082/b9788105-8892-4398-8b47-b513a292378e" width="200"/>
|
11 |
+
|
12 |
+
<div> </div>
|
13 |
+
<div align="center">
|
14 |
+
<b><font size="5">InternLM</font></b>
|
15 |
+
<sup>
|
16 |
+
<a href="https://internlm.intern-ai.org.cn/">
|
17 |
+
<i><font size="4">HOT</font></i>
|
18 |
+
</a>
|
19 |
+
</sup>
|
20 |
+
<div> </div>
|
21 |
+
</div>
|
22 |
+
|
23 |
+
|
24 |
+
[![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
|
25 |
+
|
26 |
+
[💻Github Repo](https://github.com/InternLM/InternLM) • [🤗Demo](https://huggingface.co/spaces/internlm/internlm3-8b-instruct) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new) • [📜Technical Report](https://arxiv.org/abs/2403.17297)
|
27 |
+
|
28 |
+
</div>
|
29 |
+
|
30 |
+
<p align="center">
|
31 |
+
👋 join us on <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://github.com/InternLM/InternLM/assets/25839884/a6aad896-7232-4220-ac84-9e070c2633ce" target="_blank">WeChat</a>
|
32 |
+
</p>
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
## Introduction
|
37 |
+
|
38 |
+
This is a quantization of [internlm/internlm3-8b-instruct](https://huggingface.co/internlm/internlm3-8b-instruct) for NVIDIA GPUs like Ada Lovelace and Hopper architectures. Refer to [lmdeploy](https://lmdeploy.readthedocs.io/en/latest/quantization/w8a8.html#smoothquant) for more information.
|
39 |
+
|
40 |
+
InternLM3 has open-sourced an 8-billion parameter instruction model, InternLM3-8B-Instruct, designed for general-purpose usage and advanced reasoning. This model has the following characteristics:
|
41 |
+
|
42 |
+
- **Enhanced performance at reduced cost**:
|
43 |
+
State-of-the-art performance on reasoning and knowledge-intensive tasks surpass models like Llama3.1-8B and Qwen2.5-7B. Remarkably, InternLM3 is trained on only 4 trillion high-quality tokens, saving more than 75% of the training cost compared to other LLMs of similar scale.
|
44 |
+
- **Deep thinking capability**:
|
45 |
+
InternLM3 supports both the deep thinking mode for solving complicated reasoning tasks via the long chain-of-thought and the normal response mode for fluent user interactions.
|
46 |
+
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
|
50 |
+
[LMDeploy](https://github.com/InternLM/lmdeploy) is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
|
51 |
+
|
52 |
+
```bash
|
53 |
+
pip install lmdeploy
|
54 |
+
```
|
55 |
+
|
56 |
+
You can run batch inference locally with the following python code:
|
57 |
+
|
58 |
+
```python
|
59 |
+
import lmdeploy
|
60 |
+
model_id = "internlm/internlm3-8b-instruct-smoothquant-fp8"
|
61 |
+
pipe = lmdeploy.pipeline(model_id)
|
62 |
+
response = pipe("Please tell me five scenic spots in Shanghai")
|
63 |
+
print(response)
|
64 |
+
```
|
65 |
+
|
66 |
+
Or you can launch an OpenAI compatible server with the following command:
|
67 |
+
|
68 |
+
```bash
|
69 |
+
lmdeploy serve api_server internlm/internlm3-8b-instruct-smoothquant-fp8 --model-name internlm3-8b-instruct --server-port 23333
|
70 |
+
```
|
71 |
+
|
72 |
+
Then you can send a chat request to the server:
|
73 |
+
|
74 |
+
```bash
|
75 |
+
curl http://localhost:23333/v1/chat/completions \
|
76 |
+
-H "Content-Type: application/json" \
|
77 |
+
-d '{
|
78 |
+
"model": "internlm3-8b-instruct",
|
79 |
+
"messages": [
|
80 |
+
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"}
|
81 |
+
]
|
82 |
+
}'
|
83 |
+
```
|
84 |
+
|
85 |
+
Find more details in the [LMDeploy documentation](https://lmdeploy.readthedocs.io/en/latest/)
|
86 |
+
|
87 |
+
|
88 |
+
## Open Source License
|
89 |
+
|
90 |
+
Code and model weights are licensed under Apache-2.0.
|
91 |
+
|
92 |
+
## Citation
|
93 |
+
|
94 |
+
```
|
95 |
+
@misc{cai2024internlm2,
|
96 |
+
title={InternLM2 Technical Report},
|
97 |
+
author={Zheng Cai and Maosong Cao and Haojiong Chen and Kai Chen and Keyu Chen and Xin Chen and Xun Chen and Zehui Chen and Zhi Chen and Pei Chu and Xiaoyi Dong and Haodong Duan and Qi Fan and Zhaoye Fei and Yang Gao and Jiaye Ge and Chenya Gu and Yuzhe Gu and Tao Gui and Aijia Guo and Qipeng Guo and Conghui He and Yingfan Hu and Ting Huang and Tao Jiang and Penglong Jiao and Zhenjiang Jin and Zhikai Lei and Jiaxing Li and Jingwen Li and Linyang Li and Shuaibin Li and Wei Li and Yining Li and Hongwei Liu and Jiangning Liu and Jiawei Hong and Kaiwen Liu and Kuikun Liu and Xiaoran Liu and Chengqi Lv and Haijun Lv and Kai Lv and Li Ma and Runyuan Ma and Zerun Ma and Wenchang Ning and Linke Ouyang and Jiantao Qiu and Yuan Qu and Fukai Shang and Yunfan Shao and Demin Song and Zifan Song and Zhihao Sui and Peng Sun and Yu Sun and Huanze Tang and Bin Wang and Guoteng Wang and Jiaqi Wang and Jiayu Wang and Rui Wang and Yudong Wang and Ziyi Wang and Xingjian Wei and Qizhen Weng and Fan Wu and Yingtong Xiong and Chao Xu and Ruiliang Xu and Hang Yan and Yirong Yan and Xiaogui Yang and Haochen Ye and Huaiyuan Ying and Jia Yu and Jing Yu and Yuhang Zang and Chuyu Zhang and Li Zhang and Pan Zhang and Peng Zhang and Ruijie Zhang and Shuo Zhang and Songyang Zhang and Wenjian Zhang and Wenwei Zhang and Xingcheng Zhang and Xinyue Zhang and Hui Zhao and Qian Zhao and Xiaomeng Zhao and Fengzhe Zhou and Zaida Zhou and Jingming Zhuo and Yicheng Zou and Xipeng Qiu and Yu Qiao and Dahua Lin},
|
98 |
+
year={2024},
|
99 |
+
eprint={2403.17297},
|
100 |
+
archivePrefix={arXiv},
|
101 |
+
primaryClass={cs.CL}
|
102 |
+
}
|
103 |
+
```
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
## 简介
|
108 |
+
|
109 |
+
### InternLM3-8B-Instruct
|
110 |
+
|
111 |
+
InternLM3,即书生·浦语大模型第3代,开源了80亿参数,面向通用使用与高阶推理的指令模型(InternLM3-8B-Instruct)。模型具备以下特点:
|
112 |
+
|
113 |
+
- **更低的代价取得更高的性能**:
|
114 |
+
在推理、知识类任务上取得同量级最优性能,超过Llama3.1-8B和Qwen2.5-7B。值得关注的是InternLM3只用了4万亿词元进行训练,对比同级别模型训练成本节省75%以上。
|
115 |
+
- **深度思考能力**:
|
116 |
+
InternLM3支持通过长思维链求解复杂推理任务的深度思考模式,同时还兼顾了用户体验更流畅的通用回复模式。
|
117 |
+
|
118 |
+
#### 性能评测
|
119 |
+
|
120 |
+
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。
|
121 |
+
|
122 |
+
| | 评测集\模型 | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(闭源) |
|
123 |
+
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ----------------- |
|
124 |
+
| General | CMMLU(0-shot) | **83.1** | 75.8 | 53.9 | 66.0 |
|
125 |
+
| | MMLU(0-shot) | 76.6 | **76.8** | 71.8 | 82.7 |
|
126 |
+
| | MMLU-Pro(0-shot) | **57.6** | 56.2 | 48.1 | 64.1 |
|
127 |
+
| Reasoning | GPQA-Diamond(0-shot) | **37.4** | 33.3 | 24.2 | 42.9 |
|
128 |
+
| | DROP(0-shot) | **83.1** | 80.4 | 81.6 | 85.2 |
|
129 |
+
| | HellaSwag(10-shot) | **91.2** | 85.3 | 76.7 | 89.5 |
|
130 |
+
| | KOR-Bench(0-shot) | **56.4** | 44.6 | 47.7 | 58.2 |
|
131 |
+
| MATH | MATH-500(0-shot) | **83.0*** | 72.4 | 48.4 | 74.0 |
|
132 |
+
| | AIME2024(0-shot) | **20.0*** | 16.7 | 6.7 | 13.3 |
|
133 |
+
| Coding | LiveCodeBench(2407-2409 Pass@1) | **17.8** | 16.8 | 12.9 | 21.8 |
|
134 |
+
| | HumanEval(Pass@1) | 82.3 | **85.4** | 72.0 | 86.6 |
|
135 |
+
| Instrunction | IFEval(Prompt-Strict) | **79.3** | 71.7 | 75.2 | 79.7 |
|
136 |
+
| LongContext | RULER(4-128K Average) | 87.9 | 81.4 | **88.5** | 90.7 |
|
137 |
+
| Chat | AlpacaEval 2.0(LC WinRate) | **51.1** | 30.3 | 25.0 | 50.7 |
|
138 |
+
| | WildBench(Raw Score) | **33.1** | 23.3 | 1.5 | 40.3 |
|
139 |
+
| | MT-Bench-101(Score 1-10) | **8.59** | 8.49 | 8.37 | 8.87 |
|
140 |
+
|
141 |
+
- 表中标粗的数值表示在对比的开源模型中的最高值。
|
142 |
+
- 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表使用深度思考模式进行评测),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
|
143 |
+
- 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
|
144 |
+
|
145 |
+
**局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
|
146 |
+
|
147 |
+
#### 依赖
|
148 |
+
|
149 |
+
```python
|
150 |
+
transformers >= 4.48
|
151 |
+
```
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
#### 常规对话模式
|
157 |
+
|
158 |
+
##### Transformers 推理
|
159 |
+
|
160 |
+
通过以下的代码加载 InternLM3 8B Instruct 模型
|
161 |
+
|
162 |
+
```python
|
163 |
+
import torch
|
164 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
165 |
+
|
166 |
+
model_dir = "internlm/internlm3-8b-instruct"
|
167 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
168 |
+
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
169 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
170 |
+
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
171 |
+
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
172 |
+
# pip install -U bitsandbytes
|
173 |
+
# 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
|
174 |
+
# 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
|
175 |
+
model = model.eval()
|
176 |
+
|
177 |
+
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
|
178 |
+
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
|
179 |
+
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
|
180 |
+
messages = [
|
181 |
+
{"role": "system", "content": system_prompt},
|
182 |
+
{"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
|
183 |
+
]
|
184 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
185 |
+
|
186 |
+
generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
|
187 |
+
|
188 |
+
generated_ids = [
|
189 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
190 |
+
]
|
191 |
+
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
192 |
+
print(prompt)
|
193 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
194 |
+
print(response)
|
195 |
+
```
|
196 |
+
|
197 |
+
##### LMDeploy 推理
|
198 |
+
|
199 |
+
LMDeploy 是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。
|
200 |
+
|
201 |
+
```bash
|
202 |
+
pip install lmdeploy
|
203 |
+
```
|
204 |
+
|
205 |
+
你可以使用以下 python 代码进行本地批量推理:
|
206 |
+
|
207 |
+
```python
|
208 |
+
import lmdeploy
|
209 |
+
model_dir = "internlm/internlm3-8b-instruct"
|
210 |
+
pipe = lmdeploy.pipeline(model_dir)
|
211 |
+
response = pipe(["Please tell me five scenic spots in Shanghai"])
|
212 |
+
print(response)
|
213 |
+
|
214 |
+
```
|
215 |
+
|
216 |
+
或者你可以使用以下命令启动兼容 OpenAI API 的服务:
|
217 |
+
|
218 |
+
```bash
|
219 |
+
lmdeploy serve api_server internlm/internlm3-8b-instruct --model-name internlm3-8b-instruct --server-port 23333
|
220 |
+
```
|
221 |
+
|
222 |
+
然后你可以向服务端发起一个聊天请求:
|
223 |
+
|
224 |
+
```bash
|
225 |
+
curl http://localhost:23333/v1/chat/completions \
|
226 |
+
-H "Content-Type: application/json" \
|
227 |
+
-d '{
|
228 |
+
"model": "internlm3-8b-instruct",
|
229 |
+
"messages": [
|
230 |
+
{"role": "user", "content": "介绍一下深度学习。"}
|
231 |
+
]
|
232 |
+
}'
|
233 |
+
```
|
234 |
+
|
235 |
+
更多信息请查看 [LMDeploy 文档](https://lmdeploy.readthedocs.io/en/latest/)
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
##### Ollama 推理
|
240 |
+
|
241 |
+
准备工作
|
242 |
+
|
243 |
+
```python
|
244 |
+
# install ollama
|
245 |
+
curl -fsSL https://ollama.com/install.sh | sh
|
246 |
+
# fetch 模型
|
247 |
+
ollama pull internlm/internlm3-8b-instruct
|
248 |
+
# install python库
|
249 |
+
pip install ollama
|
250 |
+
```
|
251 |
+
|
252 |
+
推理代码
|
253 |
+
|
254 |
+
```python
|
255 |
+
import ollama
|
256 |
+
|
257 |
+
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
|
258 |
+
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
|
259 |
+
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
|
260 |
+
|
261 |
+
messages = [
|
262 |
+
{
|
263 |
+
"role": "system",
|
264 |
+
"content": system_prompt,
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"role": "user",
|
268 |
+
"content": "Please tell me five scenic spots in Shanghai"
|
269 |
+
},
|
270 |
+
]
|
271 |
+
|
272 |
+
stream = ollama.chat(
|
273 |
+
model='internlm/internlm3-8b-instruct',
|
274 |
+
messages=messages,
|
275 |
+
stream=True,
|
276 |
+
)
|
277 |
+
|
278 |
+
for chunk in stream:
|
279 |
+
print(chunk['message']['content'], end='', flush=True)
|
280 |
+
```
|
281 |
+
|
282 |
+
|
283 |
+
####
|
284 |
+
|
285 |
+
##### vLLM 推理
|
286 |
+
|
287 |
+
参考[文档](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) 安装 vllm 最新代码
|
288 |
+
|
289 |
+
```bash
|
290 |
+
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
|
291 |
+
```
|
292 |
+
|
293 |
+
推理代码
|
294 |
+
|
295 |
+
```python
|
296 |
+
from vllm import LLM, SamplingParams
|
297 |
+
|
298 |
+
llm = LLM(model="internlm/internlm3-8b-instruct")
|
299 |
+
sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
|
300 |
+
|
301 |
+
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
|
302 |
+
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
|
303 |
+
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
|
304 |
+
|
305 |
+
prompts = [
|
306 |
+
{
|
307 |
+
"role": "system",
|
308 |
+
"content": system_prompt,
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"role": "user",
|
312 |
+
"content": "Please tell me five scenic spots in Shanghai"
|
313 |
+
},
|
314 |
+
]
|
315 |
+
outputs = llm.chat(prompts,
|
316 |
+
sampling_params=sampling_params,
|
317 |
+
use_tqdm=False)
|
318 |
+
print(outputs)
|
319 |
+
```
|
320 |
+
|
321 |
+
#### 深度思考模式
|
322 |
+
|
323 |
+
##### 深度思考 Demo
|
324 |
+
|
325 |
+
<img src="https://github.com/InternLM/InternLM/blob/017ba7446d20ecc3b9ab8e7b66cc034500868ab4/assets/solve_puzzle.png?raw=true" width="400"/>
|
326 |
+
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
##### 深度思考 system prompt
|
332 |
+
|
333 |
+
```python
|
334 |
+
thinking_system_prompt = """You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
|
335 |
+
## Deep Understanding
|
336 |
+
Take time to fully comprehend the problem before attempting a solution. Consider:
|
337 |
+
- What is the real question being asked?
|
338 |
+
- What are the given conditions and what do they tell us?
|
339 |
+
- Are there any special restrictions or assumptions?
|
340 |
+
- Which information is crucial and which is supplementary?
|
341 |
+
## Multi-angle Analysis
|
342 |
+
Before solving, conduct thorough analysis:
|
343 |
+
- What mathematical concepts and properties are involved?
|
344 |
+
- Can you recall similar classic problems or solution methods?
|
345 |
+
- Would diagrams or tables help visualize the problem?
|
346 |
+
- Are there special cases that need separate consideration?
|
347 |
+
## Systematic Thinking
|
348 |
+
Plan your solution path:
|
349 |
+
- Propose multiple possible approaches
|
350 |
+
- Analyze the feasibility and merits of each method
|
351 |
+
- Choose the most appropriate method and explain why
|
352 |
+
- Break complex problems into smaller, manageable steps
|
353 |
+
## Rigorous Proof
|
354 |
+
During the solution process:
|
355 |
+
- Provide solid justification for each step
|
356 |
+
- Include detailed proofs for key conclusions
|
357 |
+
- Pay attention to logical connections
|
358 |
+
- Be vigilant about potential oversights
|
359 |
+
## Repeated Verification
|
360 |
+
After completing your solution:
|
361 |
+
- Verify your results satisfy all conditions
|
362 |
+
- Check for overlooked special cases
|
363 |
+
- Consider if the solution can be optimized or simplified
|
364 |
+
- Review your reasoning process
|
365 |
+
Remember:
|
366 |
+
1. Take time to think thoroughly rather than rushing to an answer
|
367 |
+
2. Rigorously prove each key conclusion
|
368 |
+
3. Keep an open mind and try different approaches
|
369 |
+
4. Summarize valuable problem-solving methods
|
370 |
+
5. Maintain healthy skepticism and verify multiple times
|
371 |
+
Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
|
372 |
+
When you're ready, present your complete solution with:
|
373 |
+
- Clear problem understanding
|
374 |
+
- Detailed solution process
|
375 |
+
- Key insights
|
376 |
+
- Thorough verification
|
377 |
+
Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
|
378 |
+
"""
|
379 |
+
```
|
380 |
+
|
381 |
+
##### Transformers 推理
|
382 |
+
|
383 |
+
|
384 |
+
```python
|
385 |
+
import torch
|
386 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
387 |
+
|
388 |
+
model_dir = "internlm/internlm3-8b-instruct"
|
389 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
390 |
+
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
391 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
392 |
+
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
393 |
+
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
394 |
+
# pip install -U bitsandbytes
|
395 |
+
# 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
|
396 |
+
# 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
|
397 |
+
model = model.eval()
|
398 |
+
|
399 |
+
messages = [
|
400 |
+
{"role": "system", "content": thinking_system_prompt},
|
401 |
+
{"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
|
402 |
+
]
|
403 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
404 |
+
|
405 |
+
generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
|
406 |
+
|
407 |
+
generated_ids = [
|
408 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
|
409 |
+
]
|
410 |
+
prompt = tokenizer.batch_decode(tokenized_chat)[0]
|
411 |
+
print(prompt)
|
412 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
413 |
+
print(response)
|
414 |
+
```
|
415 |
+
##### LMDeploy 推理
|
416 |
+
|
417 |
+
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
|
418 |
+
|
419 |
+
```bash
|
420 |
+
pip install lmdeploy
|
421 |
+
```
|
422 |
+
|
423 |
+
You can run batch inference locally with the following python code:
|
424 |
+
|
425 |
+
```python
|
426 |
+
from lmdeploy import pipeline, GenerationConfig, ChatTemplateConfig
|
427 |
+
model_dir = "internlm/internlm3-8b-instruct"
|
428 |
+
chat_template_config = ChatTemplateConfig(model_name='internlm3')
|
429 |
+
pipe = pipeline(model_dir, chat_template_config=chat_template_config)
|
430 |
+
|
431 |
+
messages = [
|
432 |
+
{"role": "system", "content": thinking_system_prompt},
|
433 |
+
{"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
|
434 |
+
]
|
435 |
+
|
436 |
+
response = pipe(messages, gen_config=GenerationConfig(max_new_tokens=2048))
|
437 |
+
print(response)
|
438 |
+
```
|
439 |
+
|
440 |
+
##### Ollama 推理
|
441 |
+
|
442 |
+
准备工作
|
443 |
+
|
444 |
+
```python
|
445 |
+
# install ollama
|
446 |
+
curl -fsSL https://ollama.com/install.sh | sh
|
447 |
+
# fetch 模型
|
448 |
+
ollama pull internlm/internlm3-8b-instruct
|
449 |
+
# install python库
|
450 |
+
pip install ollama
|
451 |
+
```
|
452 |
+
|
453 |
+
inference code,
|
454 |
+
|
455 |
+
```python
|
456 |
+
import ollama
|
457 |
+
|
458 |
+
messages = [
|
459 |
+
{
|
460 |
+
"role": "system",
|
461 |
+
"content": thinking_system_prompt,
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"role": "user",
|
465 |
+
"content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
|
466 |
+
},
|
467 |
+
]
|
468 |
+
|
469 |
+
stream = ollama.chat(
|
470 |
+
model='internlm/internlm3-8b-instruct',
|
471 |
+
messages=messages,
|
472 |
+
stream=True,
|
473 |
+
)
|
474 |
+
|
475 |
+
for chunk in stream:
|
476 |
+
print(chunk['message']['content'], end='', flush=True)
|
477 |
+
```
|
478 |
+
|
479 |
+
|
480 |
+
####
|
481 |
+
|
482 |
+
##### vLLM 推理
|
483 |
+
|
484 |
+
参考[文档](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) 安装 vllm 最新代码
|
485 |
+
|
486 |
+
```bash
|
487 |
+
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
|
488 |
+
```
|
489 |
+
|
490 |
+
推理代码
|
491 |
+
|
492 |
+
```python
|
493 |
+
from vllm import LLM, SamplingParams
|
494 |
+
|
495 |
+
llm = LLM(model="internlm/internlm3-8b-instruct")
|
496 |
+
sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8, max_tokens=8192)
|
497 |
+
|
498 |
+
prompts = [
|
499 |
+
{
|
500 |
+
"role": "system",
|
501 |
+
"content": thinking_system_prompt,
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"role": "user",
|
505 |
+
"content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"
|
506 |
+
},
|
507 |
+
]
|
508 |
+
outputs = llm.chat(prompts,
|
509 |
+
sampling_params=sampling_params,
|
510 |
+
use_tqdm=False)
|
511 |
+
print(outputs)
|
512 |
+
```
|
513 |
+
|
514 |
+
|
515 |
+
|
516 |
+
|
517 |
+
|
518 |
+
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
## 开源许可证
|
523 |
+
|
524 |
+
本仓库的代码和权重依照 Apache-2.0 协议开源。
|
525 |
+
|
526 |
+
## 引用
|
527 |
+
|
528 |
+
```
|
529 |
+
@misc{cai2024internlm2,
|
530 |
+
title={InternLM2 Technical Report},
|
531 |
+
author={Zheng Cai and Maosong Cao and Haojiong Chen and Kai Chen and Keyu Chen and Xin Chen and Xun Chen and Zehui Chen and Zhi Chen and Pei Chu and Xiaoyi Dong and Haodong Duan and Qi Fan and Zhaoye Fei and Yang Gao and Jiaye Ge and Chenya Gu and Yuzhe Gu and Tao Gui and Aijia Guo and Qipeng Guo and Conghui He and Yingfan Hu and Ting Huang and Tao Jiang and Penglong Jiao and Zhenjiang Jin and Zhikai Lei and Jiaxing Li and Jingwen Li and Linyang Li and Shuaibin Li and Wei Li and Yining Li and Hongwei Liu and Jiangning Liu and Jiawei Hong and Kaiwen Liu and Kuikun Liu and Xiaoran Liu and Chengqi Lv and Haijun Lv and Kai Lv and Li Ma and Runyuan Ma and Zerun Ma and Wenchang Ning and Linke Ouyang and Jiantao Qiu and Yuan Qu and Fukai Shang and Yunfan Shao and Demin Song and Zifan Song and Zhihao Sui and Peng Sun and Yu Sun and Huanze Tang and Bin Wang and Guoteng Wang and Jiaqi Wang and Jiayu Wang and Rui Wang and Yudong Wang and Ziyi Wang and Xingjian Wei and Qizhen Weng and Fan Wu and Yingtong Xiong and Chao Xu and Ruiliang Xu and Hang Yan and Yirong Yan and Xiaogui Yang and Haochen Ye and Huaiyuan Ying and Jia Yu and Jing Yu and Yuhang Zang and Chuyu Zhang and Li Zhang and Pan Zhang and Peng Zhang and Ruijie Zhang and Shuo Zhang and Songyang Zhang and Wenjian Zhang and Wenwei Zhang and Xingcheng Zhang and Xinyue Zhang and Hui Zhao and Qian Zhao and Xiaomeng Zhao and Fengzhe Zhou and Zaida Zhou and Jingming Zhuo and Yicheng Zou and Xipeng Qiu and Yu Qiao and Dahua Lin},
|
532 |
+
year={2024},
|
533 |
+
eprint={2403.17297},
|
534 |
+
archivePrefix={arXiv},
|
535 |
+
primaryClass={cs.CL}
|
536 |
+
}
|
537 |
+
```
|
config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/141/develop_internlm3_open_source_hf_0110v1/20250109095225_hf-080_open_source_hf",
|
3 |
+
"architectures": [
|
4 |
+
"InternLM3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_internlm3.InternLM3Config",
|
9 |
+
"AutoModel": "modeling_internlm3.InternLM3Model",
|
10 |
+
"AutoModelForCausalLM": "modeling_internlm3.InternLM3ForCausalLM"
|
11 |
+
},
|
12 |
+
"bias": false,
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"head_dim": 128,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 10240,
|
20 |
+
"max_position_embeddings": 32768,
|
21 |
+
"model_type": "internlm3",
|
22 |
+
"num_attention_heads": 32,
|
23 |
+
"num_hidden_layers": 48,
|
24 |
+
"num_key_value_heads": 2,
|
25 |
+
"pad_token_id": 2,
|
26 |
+
"qkv_bias": false,
|
27 |
+
"quantization_config": {
|
28 |
+
"quant_dtype": "float8_e4m3fn",
|
29 |
+
"quant_method": "smooth_quant"
|
30 |
+
},
|
31 |
+
"rms_norm_eps": 1e-05,
|
32 |
+
"rope_scaling": {
|
33 |
+
"factor": 6.0,
|
34 |
+
"rope_type": "dynamic"
|
35 |
+
},
|
36 |
+
"rope_theta": 50000000,
|
37 |
+
"tie_word_embeddings": false,
|
38 |
+
"torch_dtype": "bfloat16",
|
39 |
+
"transformers_version": "4.47.1",
|
40 |
+
"use_cache": false,
|
41 |
+
"vocab_size": 128512
|
42 |
+
}
|
configuration_internlm3.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" InternLM3 model configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
class InternLM3Config(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
39 |
+
Vocabulary size of the InternLM3 model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`InternLM3Model`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
57 |
+
The non-linear activation function (function or string) in the decoder.
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
59 |
+
The maximum sequence length that this model might ever be used with.
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
63 |
+
The epsilon used by the rms normalization layers.
|
64 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether the model's input and output word embeddings should be tied.
|
69 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
70 |
+
The base period of the RoPE embeddings.
|
71 |
+
rope_scaling (`Dict`, *optional*):
|
72 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
73 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
74 |
+
accordingly.
|
75 |
+
Expected contents:
|
76 |
+
`rope_type` (`str`):
|
77 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
78 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
79 |
+
`factor` (`float`, *optional*):
|
80 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
81 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
82 |
+
original maximum pre-trained length.
|
83 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
84 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
85 |
+
pretraining.
|
86 |
+
`attention_factor` (`float`, *optional*):
|
87 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
88 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
89 |
+
`factor` field to infer the suggested value.
|
90 |
+
`beta_fast` (`float`, *optional*):
|
91 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
92 |
+
ramp function. If unspecified, it defaults to 32.
|
93 |
+
`beta_slow` (`float`, *optional*):
|
94 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
95 |
+
ramp function. If unspecified, it defaults to 1.
|
96 |
+
`short_factor` (`List[float]`, *optional*):
|
97 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
98 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
99 |
+
size divided by the number of attention heads divided by 2
|
100 |
+
`long_factor` (`List[float]`, *optional*):
|
101 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
102 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
103 |
+
size divided by the number of attention heads divided by 2
|
104 |
+
`low_freq_factor` (`float`, *optional*):
|
105 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
106 |
+
`high_freq_factor` (`float`, *optional*):
|
107 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
108 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether to use a bias in the query, key and value projection layers during self-attention.
|
110 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
111 |
+
The dropout ratio for the attention probabilities.
|
112 |
+
bias (`bool`, *optional*, defaults to `False`):
|
113 |
+
Whether to use a bias in o_proj, up_proj, down_proj and gate_proj layers.
|
114 |
+
head_dim (`int`, *optional*):
|
115 |
+
The attention head dimension. If None, it will default to hidden_size // num_heads
|
116 |
+
|
117 |
+
```python
|
118 |
+
>>> from transformers import InternLM3Model, InternLM3Config
|
119 |
+
|
120 |
+
>>> # Initializing a InternLM3 style configuration
|
121 |
+
>>> configuration = InternLM3Config()
|
122 |
+
|
123 |
+
>>> # Initializing a model from the InternLM3-8B style configuration
|
124 |
+
>>> model = InternLM3Model(configuration)
|
125 |
+
|
126 |
+
>>> # Accessing the model configuration
|
127 |
+
>>> configuration = model.config
|
128 |
+
```"""
|
129 |
+
|
130 |
+
model_type = "internlm3"
|
131 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
132 |
+
|
133 |
+
# Default tensor parallel plan for base model `InternLM3`
|
134 |
+
base_model_tp_plan = {
|
135 |
+
"layers.*.self_attn.q_proj": "colwise",
|
136 |
+
"layers.*.self_attn.k_proj": "colwise",
|
137 |
+
"layers.*.self_attn.v_proj": "colwise",
|
138 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
139 |
+
"layers.*.mlp.gate_proj": "colwise",
|
140 |
+
"layers.*.mlp.up_proj": "colwise",
|
141 |
+
"layers.*.mlp.down_proj": "rowwise",
|
142 |
+
}
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
vocab_size=128512,
|
147 |
+
hidden_size=4096,
|
148 |
+
intermediate_size=11008,
|
149 |
+
num_hidden_layers=32,
|
150 |
+
num_attention_heads=32,
|
151 |
+
num_key_value_heads=32,
|
152 |
+
hidden_act="silu",
|
153 |
+
max_position_embeddings=32768,
|
154 |
+
initializer_range=0.02,
|
155 |
+
rms_norm_eps=1e-6,
|
156 |
+
use_cache=True,
|
157 |
+
tie_word_embeddings=False,
|
158 |
+
rope_theta=10000.0,
|
159 |
+
rope_scaling=None,
|
160 |
+
qkv_bias=False,
|
161 |
+
attention_dropout=0.0,
|
162 |
+
bias=False,
|
163 |
+
head_dim=None,
|
164 |
+
**kwargs,
|
165 |
+
):
|
166 |
+
self.vocab_size = vocab_size
|
167 |
+
self.max_position_embeddings = max_position_embeddings
|
168 |
+
self.hidden_size = hidden_size
|
169 |
+
self.intermediate_size = intermediate_size
|
170 |
+
self.num_hidden_layers = num_hidden_layers
|
171 |
+
self.num_attention_heads = num_attention_heads
|
172 |
+
|
173 |
+
# for backward compatibility
|
174 |
+
if num_key_value_heads is None:
|
175 |
+
num_key_value_heads = num_attention_heads
|
176 |
+
|
177 |
+
self.num_key_value_heads = num_key_value_heads
|
178 |
+
self.hidden_act = hidden_act
|
179 |
+
self.initializer_range = initializer_range
|
180 |
+
self.rms_norm_eps = rms_norm_eps
|
181 |
+
self.use_cache = use_cache
|
182 |
+
self.rope_theta = rope_theta
|
183 |
+
self.rope_scaling = rope_scaling
|
184 |
+
self.qkv_bias = qkv_bias
|
185 |
+
self.attention_dropout = attention_dropout
|
186 |
+
self.bias = bias
|
187 |
+
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
188 |
+
# Validate the correctness of rotary position embeddings parameters
|
189 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
190 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
191 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
192 |
+
rope_config_validation(self)
|
193 |
+
|
194 |
+
super().__init__(
|
195 |
+
tie_word_embeddings=tie_word_embeddings,
|
196 |
+
**kwargs,
|
197 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"eos_token_id": [
|
4 |
+
2,
|
5 |
+
128131
|
6 |
+
],
|
7 |
+
"pad_token_id": 2,
|
8 |
+
"transformers_version": "4.47.1"
|
9 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8c477ec6b3fb8dbd93bf4c9996846a0040650a0340cf8f8441e37cd80fa6e0a
|
3 |
+
size 4967625864
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ae8d5f7858f7d54d35794a32a87a57168d6b68a5184d590d5d945dc4911fa56
|
3 |
+
size 4896259688
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9863798784
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.0.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.0.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.1.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.1.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.1.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.1.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.10.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.10.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.10.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.10.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.10.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.11.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.11.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.11.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.11.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.11.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.11.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.11.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.12.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.12.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.12.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.12.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.12.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.12.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.12.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.13.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.13.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.13.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.13.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.13.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.13.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.13.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.14.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.14.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.14.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.14.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.14.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.14.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.14.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.15.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.15.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.15.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.15.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.15.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.15.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.15.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.16.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.16.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.16.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.16.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.16.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.16.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.16.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.17.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.17.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.17.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.17.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.17.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.17.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.17.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.18.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.18.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.18.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.18.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.18.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.18.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.18.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.19.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.19.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.19.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.19.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.19.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.19.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.19.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.2.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.2.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.2.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.2.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.2.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.2.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.2.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.20.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.20.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.20.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.20.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.20.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.20.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.20.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.21.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.21.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.21.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.21.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.21.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.21.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.21.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.22.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.22.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.22.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.22.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.22.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.22.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.22.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.23.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.23.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.23.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.23.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.23.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.23.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.23.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.24.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.24.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
285 |
+
"model.layers.24.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
286 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
287 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"model.layers.24.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.24.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.24.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.24.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.25.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.25.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.25.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.25.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.25.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.25.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.25.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.26.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.26.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.26.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.26.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.26.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.26.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.26.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.27.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.27.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.27.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.27.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.27.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.27.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.27.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.28.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.28.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.28.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.28.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.28.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.28.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.28.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.29.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.29.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.29.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.29.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
369 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
370 |
+
"model.layers.29.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
371 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
372 |
+
"model.layers.29.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
373 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
374 |
+
"model.layers.29.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
375 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
376 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.3.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.3.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.3.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.3.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.3.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.3.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.3.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
393 |
+
"model.layers.30.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
394 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
395 |
+
"model.layers.30.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
396 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
397 |
+
"model.layers.30.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
398 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
399 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
400 |
+
"model.layers.30.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
401 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
402 |
+
"model.layers.30.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
403 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
404 |
+
"model.layers.30.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
405 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
406 |
+
"model.layers.30.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
407 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
408 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
409 |
+
"model.layers.31.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
410 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
411 |
+
"model.layers.31.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
412 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
413 |
+
"model.layers.31.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
414 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
415 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
416 |
+
"model.layers.31.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
417 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
418 |
+
"model.layers.31.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
419 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
420 |
+
"model.layers.31.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
421 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
422 |
+
"model.layers.31.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
423 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
424 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
425 |
+
"model.layers.32.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
426 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
427 |
+
"model.layers.32.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
428 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
429 |
+
"model.layers.32.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
430 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
431 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
432 |
+
"model.layers.32.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
433 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
434 |
+
"model.layers.32.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
435 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
436 |
+
"model.layers.32.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
437 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
438 |
+
"model.layers.32.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
439 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
440 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
441 |
+
"model.layers.33.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
442 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
443 |
+
"model.layers.33.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
444 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
445 |
+
"model.layers.33.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
446 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
447 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
448 |
+
"model.layers.33.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
449 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
450 |
+
"model.layers.33.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
451 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
452 |
+
"model.layers.33.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
453 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
454 |
+
"model.layers.33.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
455 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
456 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
457 |
+
"model.layers.34.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
458 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
459 |
+
"model.layers.34.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
460 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
461 |
+
"model.layers.34.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
462 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
463 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
464 |
+
"model.layers.34.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
465 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
466 |
+
"model.layers.34.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
467 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
468 |
+
"model.layers.34.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
469 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
470 |
+
"model.layers.34.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
471 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
472 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
473 |
+
"model.layers.35.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
474 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
475 |
+
"model.layers.35.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
476 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
477 |
+
"model.layers.35.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
478 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
479 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
480 |
+
"model.layers.35.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
481 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
482 |
+
"model.layers.35.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
483 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
484 |
+
"model.layers.35.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
485 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
486 |
+
"model.layers.35.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
487 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
488 |
+
"model.layers.36.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
489 |
+
"model.layers.36.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
490 |
+
"model.layers.36.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
491 |
+
"model.layers.36.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
492 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
493 |
+
"model.layers.36.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
494 |
+
"model.layers.36.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
495 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
496 |
+
"model.layers.36.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
497 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
498 |
+
"model.layers.36.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
499 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
500 |
+
"model.layers.36.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
501 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
502 |
+
"model.layers.36.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
503 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
504 |
+
"model.layers.37.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
505 |
+
"model.layers.37.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
506 |
+
"model.layers.37.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
507 |
+
"model.layers.37.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
508 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
509 |
+
"model.layers.37.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
510 |
+
"model.layers.37.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
511 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
512 |
+
"model.layers.37.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
513 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
514 |
+
"model.layers.37.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
515 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
516 |
+
"model.layers.37.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
517 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
518 |
+
"model.layers.37.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
519 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
520 |
+
"model.layers.38.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
521 |
+
"model.layers.38.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
522 |
+
"model.layers.38.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
523 |
+
"model.layers.38.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
524 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
525 |
+
"model.layers.38.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
526 |
+
"model.layers.38.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
527 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
528 |
+
"model.layers.38.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
529 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
530 |
+
"model.layers.38.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
531 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
532 |
+
"model.layers.38.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
533 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
534 |
+
"model.layers.38.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
535 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
536 |
+
"model.layers.39.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
537 |
+
"model.layers.39.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
538 |
+
"model.layers.39.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
539 |
+
"model.layers.39.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
540 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
541 |
+
"model.layers.39.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
542 |
+
"model.layers.39.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
543 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
544 |
+
"model.layers.39.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
545 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
546 |
+
"model.layers.39.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
547 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
548 |
+
"model.layers.39.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
549 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
550 |
+
"model.layers.39.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
551 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
552 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
553 |
+
"model.layers.4.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
554 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
555 |
+
"model.layers.4.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
556 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
557 |
+
"model.layers.4.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
558 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
559 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
560 |
+
"model.layers.4.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
561 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
562 |
+
"model.layers.4.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
563 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
564 |
+
"model.layers.4.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
565 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
566 |
+
"model.layers.4.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
567 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
568 |
+
"model.layers.40.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
569 |
+
"model.layers.40.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
570 |
+
"model.layers.40.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
571 |
+
"model.layers.40.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
572 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
573 |
+
"model.layers.40.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
574 |
+
"model.layers.40.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
575 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
576 |
+
"model.layers.40.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
577 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
578 |
+
"model.layers.40.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
579 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
580 |
+
"model.layers.40.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
581 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
582 |
+
"model.layers.40.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
583 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
584 |
+
"model.layers.41.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
585 |
+
"model.layers.41.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
586 |
+
"model.layers.41.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
587 |
+
"model.layers.41.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
588 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
589 |
+
"model.layers.41.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
590 |
+
"model.layers.41.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
591 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
592 |
+
"model.layers.41.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
593 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
594 |
+
"model.layers.41.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
595 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
596 |
+
"model.layers.41.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
597 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
598 |
+
"model.layers.41.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
599 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
600 |
+
"model.layers.42.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
601 |
+
"model.layers.42.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
602 |
+
"model.layers.42.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
603 |
+
"model.layers.42.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
604 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
605 |
+
"model.layers.42.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
606 |
+
"model.layers.42.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
607 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
608 |
+
"model.layers.42.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
609 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
610 |
+
"model.layers.42.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
611 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
612 |
+
"model.layers.42.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
613 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
614 |
+
"model.layers.42.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
615 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
616 |
+
"model.layers.43.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
617 |
+
"model.layers.43.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
618 |
+
"model.layers.43.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
619 |
+
"model.layers.43.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
620 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
621 |
+
"model.layers.43.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
622 |
+
"model.layers.43.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
623 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
624 |
+
"model.layers.43.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
625 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
626 |
+
"model.layers.43.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
627 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
628 |
+
"model.layers.43.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
629 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
630 |
+
"model.layers.43.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
631 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
632 |
+
"model.layers.44.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
633 |
+
"model.layers.44.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
634 |
+
"model.layers.44.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
635 |
+
"model.layers.44.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
636 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
637 |
+
"model.layers.44.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
638 |
+
"model.layers.44.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
639 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
640 |
+
"model.layers.44.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
641 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
642 |
+
"model.layers.44.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
643 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
644 |
+
"model.layers.44.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
645 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
646 |
+
"model.layers.44.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
647 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
648 |
+
"model.layers.45.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
649 |
+
"model.layers.45.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
650 |
+
"model.layers.45.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
651 |
+
"model.layers.45.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
652 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
653 |
+
"model.layers.45.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
654 |
+
"model.layers.45.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
655 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
656 |
+
"model.layers.45.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
657 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
658 |
+
"model.layers.45.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
659 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
660 |
+
"model.layers.45.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
661 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
662 |
+
"model.layers.45.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
663 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
664 |
+
"model.layers.46.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
665 |
+
"model.layers.46.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
666 |
+
"model.layers.46.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
667 |
+
"model.layers.46.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
668 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
669 |
+
"model.layers.46.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
670 |
+
"model.layers.46.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
671 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
672 |
+
"model.layers.46.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
673 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
674 |
+
"model.layers.46.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
675 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
676 |
+
"model.layers.46.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
677 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
678 |
+
"model.layers.46.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
679 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
680 |
+
"model.layers.47.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
681 |
+
"model.layers.47.mlp.down_proj.scale": "model-00002-of-00002.safetensors",
|
682 |
+
"model.layers.47.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
683 |
+
"model.layers.47.mlp.gate_proj.scale": "model-00002-of-00002.safetensors",
|
684 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
685 |
+
"model.layers.47.mlp.up_proj.scale": "model-00002-of-00002.safetensors",
|
686 |
+
"model.layers.47.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
687 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
688 |
+
"model.layers.47.self_attn.k_proj.scale": "model-00002-of-00002.safetensors",
|
689 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
690 |
+
"model.layers.47.self_attn.o_proj.scale": "model-00002-of-00002.safetensors",
|
691 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
692 |
+
"model.layers.47.self_attn.q_proj.scale": "model-00002-of-00002.safetensors",
|
693 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
694 |
+
"model.layers.47.self_attn.v_proj.scale": "model-00002-of-00002.safetensors",
|
695 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
696 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
697 |
+
"model.layers.5.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
698 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
699 |
+
"model.layers.5.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
700 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
701 |
+
"model.layers.5.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
702 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
703 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
704 |
+
"model.layers.5.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
705 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
706 |
+
"model.layers.5.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
707 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
708 |
+
"model.layers.5.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
709 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
710 |
+
"model.layers.5.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
711 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
712 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
713 |
+
"model.layers.6.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
714 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
715 |
+
"model.layers.6.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
716 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
717 |
+
"model.layers.6.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
718 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
719 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
720 |
+
"model.layers.6.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
721 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
722 |
+
"model.layers.6.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
723 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
724 |
+
"model.layers.6.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
725 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
726 |
+
"model.layers.6.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
727 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
728 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
729 |
+
"model.layers.7.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
730 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
731 |
+
"model.layers.7.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
732 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
733 |
+
"model.layers.7.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
734 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
735 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
736 |
+
"model.layers.7.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
737 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
738 |
+
"model.layers.7.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
739 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
740 |
+
"model.layers.7.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
741 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
742 |
+
"model.layers.7.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
743 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
744 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
745 |
+
"model.layers.8.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
746 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
747 |
+
"model.layers.8.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
748 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
749 |
+
"model.layers.8.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
750 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
751 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
752 |
+
"model.layers.8.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
753 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
754 |
+
"model.layers.8.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
755 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
756 |
+
"model.layers.8.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
757 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
758 |
+
"model.layers.8.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
759 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
760 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
761 |
+
"model.layers.9.mlp.down_proj.scale": "model-00001-of-00002.safetensors",
|
762 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
763 |
+
"model.layers.9.mlp.gate_proj.scale": "model-00001-of-00002.safetensors",
|
764 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
765 |
+
"model.layers.9.mlp.up_proj.scale": "model-00001-of-00002.safetensors",
|
766 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
767 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
768 |
+
"model.layers.9.self_attn.k_proj.scale": "model-00001-of-00002.safetensors",
|
769 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
770 |
+
"model.layers.9.self_attn.o_proj.scale": "model-00001-of-00002.safetensors",
|
771 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
772 |
+
"model.layers.9.self_attn.q_proj.scale": "model-00001-of-00002.safetensors",
|
773 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
774 |
+
"model.layers.9.self_attn.v_proj.scale": "model-00001-of-00002.safetensors",
|
775 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
776 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
777 |
+
}
|
778 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|action_start|>",
|
6 |
+
"<|action_end|>",
|
7 |
+
"<|interpreter|>",
|
8 |
+
"<|plugin|>",
|
9 |
+
"<restate>",
|
10 |
+
"</restate>",
|
11 |
+
"<planning>",
|
12 |
+
"</planning>",
|
13 |
+
"<recollect>",
|
14 |
+
"</recollect>",
|
15 |
+
"<execution>",
|
16 |
+
"</execution>",
|
17 |
+
"<review>",
|
18 |
+
"</review>",
|
19 |
+
"<summarize>",
|
20 |
+
"</summarize>",
|
21 |
+
"<retry>",
|
22 |
+
"</retry>",
|
23 |
+
"<conclude>",
|
24 |
+
"</conclude>"
|
25 |
+
],
|
26 |
+
"bos_token": {
|
27 |
+
"content": "<s>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
},
|
33 |
+
"eos_token": {
|
34 |
+
"content": "</s>",
|
35 |
+
"lstrip": false,
|
36 |
+
"normalized": false,
|
37 |
+
"rstrip": false,
|
38 |
+
"single_word": false
|
39 |
+
},
|
40 |
+
"pad_token": {
|
41 |
+
"content": "</s>",
|
42 |
+
"lstrip": false,
|
43 |
+
"normalized": false,
|
44 |
+
"rstrip": false,
|
45 |
+
"single_word": false
|
46 |
+
},
|
47 |
+
"unk_token": {
|
48 |
+
"content": "<unk>",
|
49 |
+
"lstrip": false,
|
50 |
+
"normalized": false,
|
51 |
+
"rstrip": false,
|
52 |
+
"single_word": false
|
53 |
+
}
|
54 |
+
}
|
tokenization_internlm3.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from shutil import copyfile
|
3 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
import sentencepiece as spm
|
6 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
7 |
+
from transformers.utils import logging
|
8 |
+
|
9 |
+
if TYPE_CHECKING:
|
10 |
+
from transformers.tokenization_utils_base import TextInput
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
15 |
+
|
16 |
+
SPIECE_UNDERLINE = "▁"
|
17 |
+
|
18 |
+
|
19 |
+
class InternLM3Tokenizer(PreTrainedTokenizer):
|
20 |
+
"""
|
21 |
+
Construct a InternLM3 tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
|
22 |
+
no padding token in the original model.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
vocab_file (`str`):
|
26 |
+
Path to the vocabulary file.
|
27 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
28 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
29 |
+
token instead.
|
30 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
31 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
32 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
33 |
+
The end of sequence token.
|
34 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
35 |
+
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
36 |
+
attention mechanisms or loss computation.
|
37 |
+
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
|
38 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
39 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
40 |
+
to set:
|
41 |
+
|
42 |
+
- `enable_sampling`: Enable subword regularization.
|
43 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
44 |
+
|
45 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
46 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
47 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
48 |
+
using forward-filtering-and-backward-sampling algorithm.
|
49 |
+
|
50 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
51 |
+
BPE-dropout.
|
52 |
+
|
53 |
+
add_bos_token (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether or not to add an `bos_token` at the start of sequences.
|
55 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
56 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
57 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
58 |
+
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
59 |
+
extra spaces.
|
60 |
+
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
61 |
+
Whether or not the default system prompt for InternLM3 should be used.
|
62 |
+
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
|
63 |
+
Whether or not to add spaces between special tokens.
|
64 |
+
spaces_for_interleaved_special_tokens (`bool`, *optional*, defaults to `False`):
|
65 |
+
Whether or not to add spaces between special tokens that are interleaved with normal tokens.
|
66 |
+
add_prefix_space (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
68 |
+
other word. Again, this should be set with `from_slow=True` to make sure it's taken into account.
|
69 |
+
"""
|
70 |
+
|
71 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
72 |
+
model_input_names = ["input_ids", "attention_mask"]
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
vocab_file,
|
77 |
+
unk_token="<unk>",
|
78 |
+
bos_token="<s>",
|
79 |
+
eos_token="</s>",
|
80 |
+
pad_token=None,
|
81 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
82 |
+
add_bos_token=True,
|
83 |
+
add_eos_token=False,
|
84 |
+
clean_up_tokenization_spaces=False,
|
85 |
+
use_default_system_prompt=False,
|
86 |
+
spaces_between_special_tokens=False,
|
87 |
+
spaces_for_interleaved_special_tokens=False,
|
88 |
+
add_prefix_space=True,
|
89 |
+
**kwargs,
|
90 |
+
):
|
91 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
92 |
+
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
93 |
+
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
94 |
+
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
|
95 |
+
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
96 |
+
|
97 |
+
self.vocab_file = vocab_file
|
98 |
+
self.add_bos_token = add_bos_token
|
99 |
+
self.add_eos_token = add_eos_token
|
100 |
+
self.use_default_system_prompt = use_default_system_prompt
|
101 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
102 |
+
self.sp_model.Load(vocab_file)
|
103 |
+
self.add_prefix_space = add_prefix_space
|
104 |
+
self.spaces_for_interleaved_special_tokens = spaces_for_interleaved_special_tokens
|
105 |
+
|
106 |
+
vocab_size = self.sp_model.get_piece_size()
|
107 |
+
self.decoder = {i: self.sp_model.id_to_piece(i) for i in range(vocab_size)}
|
108 |
+
|
109 |
+
super().__init__(
|
110 |
+
bos_token=bos_token,
|
111 |
+
eos_token=eos_token,
|
112 |
+
unk_token=unk_token,
|
113 |
+
pad_token=pad_token,
|
114 |
+
add_bos_token=add_bos_token,
|
115 |
+
add_eos_token=add_eos_token,
|
116 |
+
sp_model_kwargs=sp_model_kwargs,
|
117 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
118 |
+
use_default_system_prompt=use_default_system_prompt,
|
119 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
120 |
+
add_prefix_space=add_prefix_space,
|
121 |
+
**kwargs,
|
122 |
+
)
|
123 |
+
|
124 |
+
def __getstate__(self):
|
125 |
+
state = self.__dict__.copy()
|
126 |
+
state["sp_model"] = None
|
127 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
128 |
+
return state
|
129 |
+
|
130 |
+
def __setstate__(self, d):
|
131 |
+
self.__dict__.update(d)
|
132 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
133 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
134 |
+
|
135 |
+
@property
|
136 |
+
def vocab_size(self):
|
137 |
+
"""Returns vocab size"""
|
138 |
+
return self.sp_model.get_piece_size()
|
139 |
+
|
140 |
+
def get_vocab(self):
|
141 |
+
"""Returns vocab as a dict"""
|
142 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
143 |
+
vocab.update(self.added_tokens_encoder)
|
144 |
+
return vocab
|
145 |
+
|
146 |
+
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
|
147 |
+
"""
|
148 |
+
Args:
|
149 |
+
text: TextInput
|
150 |
+
Simply calls PreTrainedTokenizer's method
|
151 |
+
"""
|
152 |
+
return super().tokenize(text, **kwargs)
|
153 |
+
|
154 |
+
def _tokenize(self, text, **kwargs):
|
155 |
+
"""
|
156 |
+
Args:
|
157 |
+
text: TextInput
|
158 |
+
Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
|
159 |
+
"""
|
160 |
+
return self.sp_model.encode(text, out_type=str)
|
161 |
+
|
162 |
+
def _convert_token_to_id(self, token):
|
163 |
+
"""Converts a token (str) in an id using the vocab."""
|
164 |
+
return self.sp_model.piece_to_id(token)
|
165 |
+
|
166 |
+
def _convert_id_to_token(self, index):
|
167 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
168 |
+
return self.decoder.get(index, "")
|
169 |
+
|
170 |
+
def convert_tokens_to_string(self, tokens):
|
171 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
172 |
+
# since we manually add the prefix space, we have to remove it when decoding
|
173 |
+
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
|
174 |
+
tokens[0] = tokens[0][1:]
|
175 |
+
|
176 |
+
current_sub_tokens = []
|
177 |
+
out_string = ""
|
178 |
+
prev_is_special = False
|
179 |
+
for i, token in enumerate(tokens):
|
180 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
181 |
+
if token in self.all_special_tokens:
|
182 |
+
if not prev_is_special and i != 0 and self.spaces_for_interleaved_special_tokens:
|
183 |
+
out_string += " "
|
184 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
185 |
+
prev_is_special = True
|
186 |
+
current_sub_tokens = []
|
187 |
+
else:
|
188 |
+
if (
|
189 |
+
prev_is_special
|
190 |
+
and i == 1
|
191 |
+
and self.add_prefix_space
|
192 |
+
and not token.startswith(SPIECE_UNDERLINE)
|
193 |
+
and self.spaces_for_interleaved_special_tokens
|
194 |
+
):
|
195 |
+
out_string += " "
|
196 |
+
current_sub_tokens.append(token)
|
197 |
+
prev_is_special = False
|
198 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
199 |
+
return out_string
|
200 |
+
|
201 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
202 |
+
"""
|
203 |
+
Save the vocabulary and special tokens file to a directory.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
save_directory (`str`):
|
207 |
+
The directory in which to save the vocabulary.
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
`Tuple(str)`: Paths to the files saved.
|
211 |
+
"""
|
212 |
+
if not os.path.isdir(save_directory):
|
213 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
214 |
+
return
|
215 |
+
out_vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
|
216 |
+
|
217 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
218 |
+
copyfile(self.vocab_file, out_vocab_file)
|
219 |
+
elif not os.path.isfile(self.vocab_file):
|
220 |
+
with open(out_vocab_file, "wb") as fi:
|
221 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
222 |
+
fi.write(content_spiece_model)
|
223 |
+
|
224 |
+
return (out_vocab_file,)
|
225 |
+
|
226 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
227 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
228 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
229 |
+
|
230 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
231 |
+
|
232 |
+
if token_ids_1 is not None:
|
233 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
234 |
+
|
235 |
+
return output
|
236 |
+
|
237 |
+
def get_special_tokens_mask(
|
238 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
239 |
+
) -> List[int]:
|
240 |
+
"""
|
241 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
242 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
token_ids_0 (`List[int]`):
|
246 |
+
List of IDs.
|
247 |
+
token_ids_1 (`List[int]`, *optional*):
|
248 |
+
Optional second list of IDs for sequence pairs.
|
249 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
250 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
254 |
+
"""
|
255 |
+
if already_has_special_tokens:
|
256 |
+
return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
|
257 |
+
|
258 |
+
bos_token_id = [1] if self.add_bos_token else []
|
259 |
+
eos_token_id = [1] if self.add_eos_token else []
|
260 |
+
|
261 |
+
if token_ids_1 is None:
|
262 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
263 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
264 |
+
|
265 |
+
def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]:
|
266 |
+
"""
|
267 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
268 |
+
sequence pair mask has the following format:
|
269 |
+
|
270 |
+
```
|
271 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
272 |
+
| first sequence | second sequence |
|
273 |
+
```
|
274 |
+
|
275 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
276 |
+
|
277 |
+
Args:
|
278 |
+
token_ids_0 (`List[int]`):
|
279 |
+
List of ids.
|
280 |
+
token_ids_1 (`List[int]`, *optional*):
|
281 |
+
Optional second list of IDs for sequence pairs.
|
282 |
+
|
283 |
+
Returns:
|
284 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
285 |
+
"""
|
286 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
287 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
288 |
+
|
289 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
290 |
+
|
291 |
+
if token_ids_1 is not None:
|
292 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
293 |
+
|
294 |
+
return output
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcacff3229854f5103ee7a85473a30ca9a8b3a68f3aae9b7479574b23ac2256b
|
3 |
+
size 2475075
|
tokenizer_config.json
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"128111": {
|
31 |
+
"content": "<restate>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"128112": {
|
39 |
+
"content": "</restate>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"128113": {
|
47 |
+
"content": "<planning>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"128114": {
|
55 |
+
"content": "</planning>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"128115": {
|
63 |
+
"content": "<recollect>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"128116": {
|
71 |
+
"content": "</recollect>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"128117": {
|
79 |
+
"content": "<execution>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"128118": {
|
87 |
+
"content": "</execution>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"128119": {
|
95 |
+
"content": "<review>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"128120": {
|
103 |
+
"content": "</review>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"128121": {
|
111 |
+
"content": "<summarize>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
},
|
118 |
+
"128122": {
|
119 |
+
"content": "</summarize>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": true
|
125 |
+
},
|
126 |
+
"128123": {
|
127 |
+
"content": "<retry>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": false,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": true
|
133 |
+
},
|
134 |
+
"128124": {
|
135 |
+
"content": "</retry>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": false,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": true
|
141 |
+
},
|
142 |
+
"128125": {
|
143 |
+
"content": "<conclude>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": false,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": true
|
149 |
+
},
|
150 |
+
"128126": {
|
151 |
+
"content": "</conclude>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": true
|
157 |
+
},
|
158 |
+
"128127": {
|
159 |
+
"content": "<|plugin|>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": false,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": true
|
165 |
+
},
|
166 |
+
"128128": {
|
167 |
+
"content": "<|interpreter|>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": false,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": true
|
173 |
+
},
|
174 |
+
"128129": {
|
175 |
+
"content": "<|action_end|>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": false,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": true
|
181 |
+
},
|
182 |
+
"128130": {
|
183 |
+
"content": "<|action_start|>",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": false,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": true
|
189 |
+
},
|
190 |
+
"128131": {
|
191 |
+
"content": "<|im_end|>",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": false,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": true
|
197 |
+
},
|
198 |
+
"128132": {
|
199 |
+
"content": "<|im_start|>",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": false,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": true
|
205 |
+
}
|
206 |
+
},
|
207 |
+
"additional_special_tokens": [
|
208 |
+
"<|im_start|>",
|
209 |
+
"<|im_end|>",
|
210 |
+
"<|action_start|>",
|
211 |
+
"<|action_end|>",
|
212 |
+
"<|interpreter|>",
|
213 |
+
"<|plugin|>",
|
214 |
+
"<restate>",
|
215 |
+
"</restate>",
|
216 |
+
"<planning>",
|
217 |
+
"</planning>",
|
218 |
+
"<recollect>",
|
219 |
+
"</recollect>",
|
220 |
+
"<execution>",
|
221 |
+
"</execution>",
|
222 |
+
"<review>",
|
223 |
+
"</review>",
|
224 |
+
"<summarize>",
|
225 |
+
"</summarize>",
|
226 |
+
"<retry>",
|
227 |
+
"</retry>",
|
228 |
+
"<conclude>",
|
229 |
+
"</conclude>"
|
230 |
+
],
|
231 |
+
"auto_map": {
|
232 |
+
"AutoTokenizer": [
|
233 |
+
"tokenization_internlm3.InternLM3Tokenizer",
|
234 |
+
null
|
235 |
+
]
|
236 |
+
},
|
237 |
+
"bos_token": "<s>",
|
238 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
239 |
+
"clean_up_tokenization_spaces": false,
|
240 |
+
"eos_token": "</s>",
|
241 |
+
"extra_special_tokens": {},
|
242 |
+
"model_max_length": 1000000000000000019884624838656,
|
243 |
+
"pad_token": "</s>",
|
244 |
+
"sp_model_kwargs": {},
|
245 |
+
"spaces_between_special_tokens": false,
|
246 |
+
"tokenizer_class": "InternLM3Tokenizer",
|
247 |
+
"unk_token": "<unk>",
|
248 |
+
"use_default_system_prompt": false
|
249 |
+
}
|