|
--- |
|
datasets: |
|
- EleutherAI/pile |
|
- Open-Orca/OpenOrca |
|
- GAIR/lima |
|
- WizardLM/WizardLM_evol_instruct_V2_196k |
|
language: |
|
- en |
|
license: llama3 |
|
tags: |
|
- biology |
|
- medical |
|
--- |
|
# Instruction Pre-Training: Language Models are Supervised Multitask Learners |
|
This repo contains the **biomedicine model developed from Llama3-8B** in our paper [Instruction Pre-Training: Language Models are Supervised Multitask Learners](https://huggingface.co/papers/2406.14491). |
|
|
|
We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. **In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.** |
|
|
|
<p align='center'> |
|
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F66711d2ee12fa6cc5f5dfc89%2FvRdsFIVQptbNaGiZ18Lih.png%26quot%3B width="400"> |
|
</p> |
|
|
|
|
|
## Resources |
|
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗** |
|
|
|
- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer) |
|
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection) |
|
- General Models Pre-Trained from Scratch: |
|
- [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M) |
|
- [InstructLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLM-1.3B) |
|
- Domain-Specific Models Pre-Trained from Llama3-8B: |
|
- [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B) |
|
- [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B) |
|
|
|
|
|
## Domain-Adaptive Continued Pre-Training |
|
Following [AdaptLLM](https://huggingface.co/AdaptLLM/medicine-chat), we augment the domain-specific raw corpora with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer). |
|
|
|
For example, to chat with the biomedicine-Llama3-8B model: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/medicine-Llama3-8B") |
|
tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/medicine-Llama3-8B") |
|
|
|
# Put your input here, NO prompt template is required |
|
user_input = '''Question: Which of the following is an example of monosomy? |
|
Options: |
|
- 46,XX |
|
- 47,XXX |
|
- 69,XYY |
|
- 45,X |
|
|
|
Please provide your choice first and then provide explanations if possible.''' |
|
|
|
inputs = tokenizer(user_input, return_tensors="pt", add_special_tokens=True).input_ids.to(model.device) |
|
outputs = model.generate(input_ids=inputs, max_new_tokens=400)[0] |
|
|
|
answer_start = int(inputs.shape[-1]) |
|
pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True) |
|
|
|
print(pred) |
|
``` |
|
|
|
## Citation |
|
If you find our work helpful, please cite us: |
|
|
|
[AdaptLLM](https://huggingface.co/papers/2309.09530) |
|
```bibtex |
|
@inproceedings{ |
|
cheng2024adapting, |
|
title={Adapting Large Language Models via Reading Comprehension}, |
|
author={Daixuan Cheng and Shaohan Huang and Furu Wei}, |
|
booktitle={The Twelfth International Conference on Learning Representations}, |
|
year={2024}, |
|
url={https://openreview.net/forum?id=y886UXPEZ0} |
|
} |
|
``` |