File size: 16,264 Bytes
57f1782 6f50084 57f1782 457cad7 85c4729 8b2f39a 6f50084 8b2f39a 4eab7f5 8b2f39a 67c9fd0 7a0b2da 67c9fd0 457cad7 0ecc04f d0aff8e dd4444c d0aff8e f894ca2 7a0b2da 6f50084 f067870 6f50084 dd4444c 6f50084 7a0b2da 6f50084 5e932be 6f50084 1f19d3c 6f50084 e3ed28d 6f50084 8b2f39a 6f50084 8b2f39a dd4444c ec2d76f dd4444c 8b2f39a e3ed28d 8b2f39a e3ed28d 8b2f39a dd4444c 3587d50 dd4444c 6bfb0e0 f894ca2 dd4444c e3ed28d 1f19d3c e3ed28d dd4444c e3ed28d 1f19d3c e3ed28d 1f19d3c e3ed28d 1f19d3c e3ed28d 1f19d3c e3ed28d 1f19d3c e3ed28d 1f19d3c e3ed28d 1f19d3c f894ca2 1f19d3c f894ca2 1f19d3c e3ed28d dd4444c e3ed28d f894ca2 dd4444c f894ca2 21636e2 dd4444c 6f50084 6dfe650 3d05718 6dfe650 3d05718 6dfe650 3d05718 6dfe650 3587d50 6f50084 0ecc04f 2b7ed69 0ecc04f 3587d50 95649a1 3587d50 95649a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
---
license: apache-2.0
language:
- en
datasets:
- instruction-pretrain/ft-instruction-synthesizer-collection
---
# Instruction Pre-Training: Language Models are Supervised Multitask Learners (EMNLP 2024)
This repo contains the **context-based instruction synthesizer** in our paper [Instruction Pre-Training: Language Models are Supervised Multitask Learners](https://huggingface.co/papers/2406.14491).
We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.
<p align='center'>
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F66711d2ee12fa6cc5f5dfc89%2FvRdsFIVQptbNaGiZ18Lih.png%26quot%3B width="400">
</p>
### [2024/11/29] 🤗 Introduce the multimodal version of instruction synthesizer at [AdaMLLM](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains), for synthesizing visual instruction tasks 🤗
**************************** **Updates** ****************************
* 2024/11/30: Released the multimodal version of the instruction synthesizer: [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains)
* 2024/9/20: Our paper has been accepted by EMNLP 2024 main conference🎉
* 2024/9/11: Updated [FAQ on continual pre-training from Llama3](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
* 2024/8/29: Updated [guidelines](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B) on evaluating any 🤗Huggingface models on the domain-specific tasks
* 2024/7/31: Updated pre-training suggestions in the `Advanced Usage` section of [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
* 2024/7/15: We scaled up the pre-trained tokens from 100B to 250B, with the number of synthesized instruction-response pairs reaching 500M. The performance trend on downstream tasks throughout the pre-training process:
<p align='left'>
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F66711d2ee12fa6cc5f5dfc89%2F0okCfRkC6uALTfuNxt0Fa.png%26quot%3B width="500">
</p>
* 2024/6/21: Released the [paper](https://huggingface.co/papers/2406.14491), [code](https://github.com/microsoft/LMOps), and [resources](https://huggingface.co/instruction-pretrain)
## Resources
**🤗 We share our data and models with example usages, feel free to open any discussions at [this page](https://huggingface.co/papers/2406.14491)! 🤗**
- Thanks to the demo [davanstrien/instruction-synthesizer](https://huggingface.co/spaces/davanstrien/instruction-synthesizer) for implementing our approach
- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
- General Models Pre-Trained from Scratch (on 100B tokes):
- [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M)
- [InstructLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLM-1.3B)
- Domain-Specific Models Pre-Trained from Llama3-8B:
- [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B)
- [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B)
- General Instruction-Augmented Corpora: [general-instruction-augmented-corpora](https://huggingface.co/datasets/instruction-pretrain/general-instruction-augmented-corpora)
- Domain-Specific Instruction-Augmented Corpora (no finance data to avoid ethical issues): [medicine-instruction-augmented-corpora](https://huggingface.co/datasets/instruction-pretrain/medicine-instruction-augmented-corpora)
## Synthesize Instruction-Response Pairs to Augment Any Raw Corpora
We conduct multitask fine-tuning on a language model to develop an instruction synthesizer capable of generating instruction-response pairs from any raw text. The fine-tuning data are available at [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
<p align='center'>
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F66711d2ee12fa6cc5f5dfc89%2F0889QyG59QM3rPeZlcTzZ.png%26quot%3B width="700">
</p>
### 1. Basic Usage: Synthesize instruction-response pairs based on a given raw text
**💗 Here is an amazing demo that implements our approach: [davanstrien/instruction-synthesizer](https://huggingface.co/spaces/davanstrien/instruction-synthesizer) 💗**
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/instruction-synthesizer")
tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/instruction-synthesizer")
# Put your raw text here:
context = '''Free Fishing Weekend in NYS Slated
This weekend (June 28th-29th) New Yorkers may fish for free without a license in any of the state's 7,500 lakes and ponds or 50,000 miles of rivers and streams. In addition, there are a number of free events and fishing clinics taking place across the state to encourage New Yorkers to enjoy the great outdoors. For more information, visit'''
def parse_pred(pred):
"""Extract the list of instruction-response pairs from the prediction"""
QA_str_list = pred.split('</END>')
if not pred.endswith('</END>'):
QA_str_list = QA_str_list[:-1]
QA_list = []
raw_questions = []
for QA_str in QA_str_list:
try:
assert len(QA_str.split('<ANS>')) == 2, f'invalid QA string: {QA_str}'
Q_str, A_str = QA_str.split('<ANS>')
Q_str, A_str = Q_str.strip(), A_str.strip()
assert Q_str.startswith('<QUE>'), f'invalid question string: {Q_str} in QA_str: {QA_str}'
assert len(A_str) > 0, f'invalid answer string in QA_str: {QA_str}'
Q_str = Q_str.replace('<QUE>', '').strip()
assert Q_str.lower() not in raw_questions, f'duplicate question: {Q_str}'
QA_list.append({'Q': Q_str, 'A': A_str})
raw_questions.append(Q_str.lower())
except:
pass
return QA_list
def get_instruction_response_pairs(context):
'''Prompt the synthesizer to generate instruction-response pairs based on the given context'''
prompt = f'<s> <CON> {context} </CON>\n\n'
inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(model.device)
outputs = model.generate(input_ids=inputs, max_new_tokens=400, do_sample=False)[0]
pred_start = int(inputs.shape[-1])
pred = tokenizer.decode(outputs[pred_start:], skip_special_tokens=True)
return parse_pred(pred)
# Get the generated instruction-response paris
instruction_response_pairs = get_instruction_response_pairs(context)
# Print out the results
print(f'# Context:\n{context}\n')
for index, pair in enumerate(instruction_response_pairs):
print(f'## Instruction {index + 1}:\n{pair["Q"]}\n## Response {index + 1}:\n{pair["A"]}\n')
```
</details>
### 2. Advanced Usage: Convert Raw Corpora into Instruction-Augmented Corpora at Scale
We use vLLM to accelerate the synthesis process. On a single A100-80GB GPU, it takes about 1 day to synthesize instruction-response pairs for 1 billion tokens of raw corpora.
<details>
<summary> Click to expand </summary>
1). Set up dependencies:
```bash
git clone https://github.com/microsoft/LMOps.git
cd LMOps/instruction_pretrain
```
Install vLLM with pip or from [source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
```bash
pip install vllm
```
2). Synthesize and Templify Few-shot Examples for Pre-Training
A one-shot example consists of a piece of raw text followed by its instruction-response pairs. We conduct multi-round inferece to synthesize few-shot examples: the instruction-response pairs of different raw texts share the same pattern.
Suppose there are N pieces of raw text in the corpora, and you would like to covert them into M-shot examples:
```python
from vllm import LLM, SamplingParams
from utils.read_compre import get_dataset, cook_pt_entries, run
# Put your list of raw texts here
raw_texts = [
"Genetically and medically susceptible workers.\nThe likelihood of an individual becoming ill from a hazardous material or condition is strongly influenced by both their genetic makeup and their underlying state of health. Although the past decade has seen great advances in understanding human variation in health and genetic polymorphisms and in the diagnosis and treatment of disease, much less progress has been made in effectively using this information to protect worker health. Scientific evidence for increased susceptibility often is weak and rarely satisfies legal thresholds for sufficient risk to warrant exclusion from a particular job. When public safety is a major concern, many legally mandated exclusions are not well justified. Medical opinions about fitness to work should be based upon a systematic and credible analysis of the condition, its relationship to ability and risk for a particular job, and knowledge of possible accommodations. Conclusions should reflect the limitations of scientific knowledge and guidance from antidiscrimination legislation.",
"Exclusive Breastfeeding for Twin Babies and Its Influencing Factors: A Study in East Java, Indonesia.\nThis study aimed to identify the factors that influence the success of exclusive breastfeeding in twins. This cross-sectional study was conducted on 184 mothers who had twins aged 6-23 months in Malang Raya, East Java, Indonesia and used the consecutive sampling technique. The data was collected through distributing questionnaires containing questions related to knowledge about exclusive breastfeeding, breastfeeding self-efficacy, and the support of family and certified health workers. Multinomial regression statistical test results show that the most influential factor for the success of exclusive breastfeeding with twins was breastfeeding self-efficacy (OR 0.111; 95% CI 0.033-0.387). A high level of breastfeeding self-efficacy can increase a mother's confidence to be able to provide exclusive breastfeeding for twins. This study suggests that nurses can provide breastfeeding counselling to improve breastfeeding self-efficacy."]
N = len(raw_texts) # Number of raw texts
M = 2 # M-shot example
max_model_len = 4096 # max squence len of the LM you intend to pre-train
max_new_tokens = 400 # max number of tokens for the augmented instruction-response pairs
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0, max_tokens=max_new_tokens)
# Load the model and tokenizer
llm = LLM(model="instruction-pretrain/instruction-synthesizer", max_model_len=max_model_len)
# 1. multi-round inference to get the prediction
prev_examples = []
BSZ = (N+M-1)//M
for round in range(M):
cur_raw_texts = raw_texts[round*BSZ: (round+1)*BSZ]
# load data
split = get_dataset(prev_examples=prev_examples,
cur_raw_texts=cur_raw_texts,
max_model_len=max_model_len,
max_new_tokens=max_new_tokens)
prev_examples = run(split, llm, sampling_params)
# 2. templify the data for subsequent pre-training
instruction_augmented_texts = []
for idx, entry in enumerate(prev_examples):
texts = cook_pt_entries(read_collection=entry, random_seed=idx+12345)
# change random seed for each entry for diveristy
instruction_augmented_texts.extend(texts)
# 3. print out the instruction_augmented_texts
for idx, text in enumerate(instruction_augmented_texts):
print(text)
# Now you can use `instruction_augmented_texts` for pre-training!
```
</details>
**Pre-Training Suggestions:**
Except for the pre-training data, *Instruction Pre-Training* keeps all other settings the same as *Vanilla Pre-Training*.
Therefore, you can easily use any training framework, such as [OLMo](https://github.com/allenai/OLMo) (for pre-training from scratch) and [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) (for continual pre-training), to train on the templified instruction-augmented corpora.
1. For general pre-training from scratch, we recommend setting M = 2 and mixing the instruction-augmented corpora with unchanged raw corpora.
2. For domain-adaptive continual pre-training, we recommend setting M = 3 and mixing the instruction-augmented corpora with general instructions from [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca) at a 1:1 ratio (counted by tokens). Each example from OpenOrca is formulated as "{question} {response}", with a white-space used to connect the question and response.
Let's try our method in continual pre-training for a quick start---it works easily!
Feel free to ask for any suggestions at [this page](https://huggingface.co/papers/2406.14491); we will reply ASAP🤗!
## FAQ on Continual Pre-Training from LLama3
**Q1: Do you use the official Llama3 instruction prompt for pre-training?**
No, the provided Llama3 instruction prompt is designed for the [instruction-tuned model](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), but our continual pre-training is conducted on the [pre-trained base model](https://huggingface.co/meta-llama/Meta-Llama-3-8B) where only BOS (`<|begin_of_text|>`) and EOS (`<|end_of_text|>`) tokens are required.
**Q2: For the general instructions from OpenOrca, do you concatenate each instruction with its output using '\n'?**
No, as mentioned in the pre-training suggestions, we use a simple whitespace to concatenate each question with its response for the general instruction data from OpenOrca. This is because OpenOrca's data is already templated with diverse natural languge templates (such as those with `\n`), so a whitespace is sufficient to formulate the data.
Note that when using our templated instruction-augmented texts, you don't need to add any concatenations.
**Q3: What about those system prompts in OpenOrca?**
We simply discard the system prompts.
**To put it all together, the text before tokenization looks like this:**
```python
general_instruction_response_text = "<|begin_of_text|>{question} {response}<|end_of_text|>"
instruction_augmented_text = "<|begin_of_text|>{instruction augmented text}<|end_of_text|>"
```
Then, for tokenization, you don't need to add BOS and EOS token ids. The tokenization code looks like this:
```python
text_ids = tokenizer(text, add_special_tokens=False, **kwargs).input_ids
```
## Citation
If you find our work helpful, please cite us:
[Instruction Pre-Training](https://huggingface.co/papers/2406.14491) (EMNLP 2024)
```bibtex
@article{cheng2024instruction,
title={Instruction Pre-Training: Language Models are Supervised Multitask Learners},
author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu},
journal={arXiv preprint arXiv:2406.14491},
year={2024}
}
```
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024)
```bibtex
@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
``` |