Text Generation
Transformers
Safetensors
English
mistral
text-generation-inference
Inference Endpoints
instruction-pretrain commited on
Commit
8b2f39a
·
verified ·
1 Parent(s): a3c95fd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -3
README.md CHANGED
@@ -1,3 +1,72 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # Instruction Pre-Training: Language Models are Supervised Multitask Learners
5
+ This repo contains the **context-based instruction synthesizer** used in our paper **Instruction Pre-Training: Language Models are Supervised Multitask Learners**.
6
+
7
+ we explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continued pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.
8
+
9
+ <p align='center'>
10
+ <img src="./hf_intro.png" width="400">
11
+ </p>
12
+
13
+ ## Synthesize Instruction-Response Pairs from Any Raw Corproa
14
+ We conduct multitask fine-tuning on a language model to develop an instruction synthesizer capable of generating instruction-response pairs from any raw text.
15
+
16
+ <p align='center'>
17
+ <img src="./hf_synthesizer.png" width="700">
18
+ </p>
19
+
20
+ An example script to prompt the synthesizer to generate instruction-response pairs based on the given raw text is:
21
+ ```python
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer
23
+
24
+ model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/instruction-synthesizer")
25
+ tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/instruction-synthesizer")
26
+
27
+ # Put your raw text here:
28
+ context = '''Free Fishing Weekend in NYS Slated
29
+ This weekend (June 28th-29th) New Yorkers may fish for free without a license in any of the state's 7,500 lakes and ponds or 50,000 miles of rivers and streams. In addition, there are a number of free events and fishing clinics taking place across the state to encourage New Yorkers to enjoy the great outdoors. For more information, visit'''
30
+
31
+ def parse_pred(pred):
32
+ """Extract the list of instruction-response pairs from the prediction"""
33
+ QA_str_list = pred.split('</END>')
34
+ if not pred.endswith('</END>'):
35
+ QA_str_list = QA_str_list[:-1]
36
+
37
+ QA_list = []
38
+ raw_questions = []
39
+ for QA_str in QA_str_list:
40
+ try:
41
+ assert len(QA_str.split('<ANS>')) == 2, f'invalid QA string: {QA_str}'
42
+ Q_str, A_str = QA_str.split('<ANS>')
43
+ Q_str, A_str = Q_str.strip(), A_str.strip()
44
+ assert Q_str.startswith('<QUE>'), f'invalid question string: {Q_str} in QA_str: {QA_str}'
45
+ assert len(A_str) > 0, f'invalid answer string in QA_str: {QA_str}'
46
+ Q_str = Q_str.replace('<QUE>', '').strip()
47
+ assert Q_str.lower() not in raw_questions, f'duplicate question: {Q_str}'
48
+ QA_list.append({'Q': Q_str, 'A': A_str})
49
+ raw_questions.append(Q_str.lower())
50
+ except:
51
+ pass
52
+
53
+ return QA_list
54
+
55
+ def get_instruction_response_pairs(context):
56
+ '''Prompt the synthesizer to generate instruction-response pairs based on the given context'''
57
+ prompt = f'<s> <CON> {context} </CON>\n\n'
58
+ inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(model.device)
59
+ outputs = model.generate(input_ids=inputs, max_new_tokens=400)[0]
60
+
61
+ pred_start = int(inputs.shape[-1])
62
+ pred = tokenizer.decode(outputs[pred_start:], skip_special_tokens=True)
63
+ return parse_pred(pred)
64
+
65
+ # Get the list of generated instruction-response paris
66
+ instruction_response_pairs = get_instruction_response_pairs(context)
67
+
68
+ # Print out the results
69
+ print(f'# Context:\n{context}\n')
70
+ for index, pair in enumerate(instruction_response_pairs):
71
+ print(f'## Instruction {index + 1}:\n{pair["Q"]}\n## Response {index + 1}:\n{pair["A"]}\n')
72
+ ```