wav2vec2-large-xls-r-300m-sakha

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SAH dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4995
  • Wer: 0.4421

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8597 8.47 500 0.7731 0.7211
1.2508 16.95 1000 0.5368 0.5989
1.1066 25.42 1500 0.5034 0.5533
1.0064 33.9 2000 0.4686 0.5114
0.9324 42.37 2500 0.4927 0.5056
0.876 50.85 3000 0.4734 0.4795
0.8082 59.32 3500 0.4748 0.4799
0.7604 67.8 4000 0.4949 0.4691
0.7241 76.27 4500 0.5090 0.4627
0.6739 84.75 5000 0.4967 0.4452
0.6447 93.22 5500 0.5071 0.4437

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for infinitejoy/wav2vec2-large-xls-r-300m-sakha

Finetunes
1 model

Dataset used to train infinitejoy/wav2vec2-large-xls-r-300m-sakha

Evaluation results