wav2vec2-large-xls-r-300m-odia
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - OR dataset. It achieves the following results on the evaluation set:
python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config as --split test --log_outputs
- WER: 1.0921052631578947
- CER: 2.5547945205479454
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Training machine details
- Platform: Linux-5.11.0-37-generic-x86_64-with-glibc2.10
- CPU cores: 60
- Python version: 3.8.8
- PyTorch version: 1.10.1+cu102
- GPU is visible: True
- Transformers version: 4.16.0.dev0
- Datasets version: 1.17.1.dev0
- soundfile version: 0.10.3
Training script
python run_speech_recognition_ctc.py \
--dataset_name="mozilla-foundation/common_voice_7_0" \
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
--dataset_config_name="or" \
--output_dir="./wav2vec2-large-xls-r-300m-odia" \
--overwrite_output_dir \
--num_train_epochs="120" \
--per_device_train_batch_size="16" \
--per_device_eval_batch_size="16" \
--gradient_accumulation_steps="2" \
--learning_rate="7.5e-5" \
--warmup_steps="500" \
--length_column_name="input_length" \
--evaluation_strategy="steps" \
--text_column_name="sentence" \
--chars_to_ignore , ? . ! \- \; \: \" β % β β οΏ½ β \β β¦ \β \' \β \β \
--save_steps="500" \
--eval_steps="500" \
--logging_steps="100" \
--layerdrop="0.0" \
--activation_dropout="0.1" \
--save_total_limit="3" \
--freeze_feature_encoder \
--feat_proj_dropout="0.0" \
--mask_time_prob="0.75" \
--mask_time_length="10" \
--mask_feature_prob="0.25" \
--mask_feature_length="64" \
--gradient_checkpointing \
--use_auth_token \
--fp16 \
--group_by_length \
--do_train --do_eval \
--push_to_hub
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 120.0
- mixed_precision_training: Native AMP
Training results
eval_loss | eval_wer | eval_runtime | eval_samples_per_second | eval_steps_per_second | epoch | |
---|---|---|---|---|---|---|
0 | 3.35224 | 0.998972 | 5.0475 | 22.189 | 1.387 | 29.41 |
1 | 1.33679 | 0.938335 | 5.0633 | 22.12 | 1.382 | 58.82 |
2 | 0.737202 | 0.957862 | 5.0913 | 21.998 | 1.375 | 88.24 |
3 | 0.658212 | 0.96814 | 5.0953 | 21.981 | 1.374 | 117.65 |
4 | 0.658 | 0.9712 | 5.0953 | 22.115 | 1.382 | 120 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train infinitejoy/wav2vec2-large-xls-r-300m-odia
Space using infinitejoy/wav2vec2-large-xls-r-300m-odia 1
Evaluation results
- Test WER on Common Voice 7self-reported97.910
- Test CER on Common Voice 7self-reported247.090