gmonsoon's picture
Update README.md
15cf419 verified
|
raw
history blame
8.69 kB
metadata
license: cc-by-nc-4.0
tags:
  - moe
  - merge
  - mergekit
model-index:
  - name: TinyUltra-4x1.1B-Base-Alpha
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 34.9
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 61.42
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 25.42
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 37.59
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.75
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 2.58
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
          name: Open LLM Leaderboard
widget:
  - example_title: Pirate!
    messages:
      - role: system
        content: You are a pirate chatbot who always responds with Arr!
      - role: user
        content: There's a llama on my lawn, how can I get rid of him?
    output:
      text: >-
        Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare
        sight, but I've got a plan that might help ye get rid of 'im. Ye'll need
        to gather some carrots and hay, and then lure the llama away with the
        promise of a tasty treat. Once he's gone, ye can clean up yer lawn and
        enjoy the peace and quiet once again. But beware, me hearty, for there
        may be more llamas where that one came from! Arr!

image/jpeg

TinyUltra-4x1.1B-Base-Alpha

TinyUltra-4x1.1B-Base-Alpha is a Mixure of Experts (MoE) made with the following models using MergeKit:

Modelfile/Prompt format

SYSTEM You are a TinyUltra, helpful and lovely AI assistant.

TEMPLATE <|system|> {{ .System }}</s> <|user|> {{ .Prompt }}</s> <|assistant|>

PARAMETER stop <|system|>
PARAMETER stop <|user|>
PARAMETER stop <|assistant|>
PARAMETER stop </s>

🧩 Configuration

base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
gate_mode: hidden
dtype: float16
experts:
  - source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
    positive_prompts:
    - "Help me debug this code."
    - "Rewrite this function in Python."
    - "Optimize this C# script."
    - "Implement this feature using JavaScript."
    - "Convert this HTML structure into a more efficient design."
    - "Assist me with writing a program that"
  - source_model: vihangd/DopeyTinyLlama-1.1B-v1
    positive_prompts:
    - "How do you"
    - "Explain the concept of"
    - "Give an overview of"
    - "Compare and contrast between"
    - "Provide information about"
    - "Help me understand"
    - "Summarize"
    - "Make a recommendation on"
    - "Answer this question"
  - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
    positive_prompts:
    - "Write a program to solve this problem"
    - "Modify this function to improve its performance"
    - "Refactor this code to enhance readability"
    - "Create a custom function for this specific use case"
    - "Optimize this algorithm to reduce computational complexity"
    - "Implement this feature by extending existing codebase"
    - "Integrate this API call into the application"
    - "Help me troubleshoot and fix this bug"
    - "Review and test this code snippet before deployment"
    - "Analyze this error log to identify potential issues"
    - "Generate a set of unit tests for this module"
    - "Evaluate different approaches to solving this problem"
    - "Do a web search for"
    - "Use the plugin to"
  - source_model: Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test
    positive_prompts:
    - "add these numbers"
    - "whats 2+2"
    - "subtraction"
    - "division"
    - "multiplication"
    - "addition"
    - "I need help with a math problem"
    - "Solve for x"
    - "Add these two numbers together: 4 + 3 = 7"
    - "Multiply 5 by 6: 5 * 6 = 30"
    - "Divide 8 by 2: 8 / 2 = 4"
    - "Find the remainder when 9 is divided by 3: 9 % 3 = 0"
    - "Calculate the square root of 16: sqrt(16) = 4"
    - "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)"
    - "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)"
    - "Solve for x in the equation 3x - 7 = 2x + 5: x = 12"
    - "Graph the line y = 2x + 3"
    - "Approximate pi to three decimal places: 3.142"
    - "Find the derivative of f(x) = sin(x): f'(x) = cos(x)"
    - "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3"
    - "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2"
    - "Solve the system of equations Ax = b: x = [-5, 10]"
    - "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15"

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gmonsoon/TinyUltra-4x1.1B-Base-Alpha"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

GGUF: https://huggingface.co/indischepartij/TinyUltra-4x1.1B-Base-Alpha-GGUF

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 37.94
AI2 Reasoning Challenge (25-Shot) 34.90
HellaSwag (10-Shot) 61.42
MMLU (5-Shot) 25.42
TruthfulQA (0-shot) 37.59
Winogrande (5-shot) 65.75
GSM8k (5-shot) 2.58