{UTDRM-MPNet}

This is the UTDRM-MPNet model from the paper UTDRM: Unsupervised Method for Training Debunked-narrative Retrieval Models. Please consider citing the following paper if you use this model.

@article{singh2023utdrm,
  title={UTDRM: unsupervised method for training debunked-narrative retrieval models},
  author={Singh, Iknoor and Scarton, Carolina and Bontcheva, Kalina},
  journal={EPJ Data Science},
  volume={12},
  number={1},
  pages={59},
  year={2023},
  publisher={Springer}
}

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.