Multilingual Identification of English Code-Switching

AnE-NER (Any-English Code-Switching Named Entity Recognition) is a token-level model for detecting named entities in code-switching texts. It classifies words into two classes: I (inside a named entity) and O (outside a named entity). The model shows strong performance on both languages seen and unseen in the training data.

Usage

You can use AnE-NER with Huggingface’s pipeline or AutoModelForTokenClassification.

Let's try the following example (taken from this paper)

input = "My Facebook, Ig & Twitter is hellaa dead yall Jk soy yo que has no life!"

Pipeline

from transformers import pipeline
classifier = pipeline("token-classification", model="igorsterner/AnE-NER", aggregation_strategy="simple")
result = classifier(input)

which returns

[{'entity_group': 'I',
  'score': 0.95482016,
  'word': 'Facebook',
  'start': 3,
  'end': 11},
 {'entity_group': 'I',
  'score': 0.9638739,
  'word': 'Ig',
  'start': 13,
  'end': 15},
 {'entity_group': 'I',
  'score': 0.98207414,
  'word': 'Twitter',
  'start': 18,
  'end': 25}]

Advanced

If your input is already word-tokenized, and you want the corresponding word NER labels, you can try the following strategy

import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer

lid_model_name = "igorsterner/AnE-NER"
lid_tokenizer = AutoTokenizer.from_pretrained(lid_model_name)
lid_model = AutoModelForTokenClassification.from_pretrained(lid_model_name)

word_tokens = ['My', 'Facebook', ',', 'Ig', '&', 'Twitter', 'is', 'hellaa', 'dead', 'yall', 'Jk', 'soy', 'yo', 'que', 'has', 'no', 'life', '!']

subword_inputs = lid_tokenizer(
    word_tokens, truncation=True, is_split_into_words=True, return_tensors="pt"
)

subword2word = subword_inputs.word_ids(batch_index=0)
logits = lid_model(**subword_inputs).logits
predictions = torch.argmax(logits, dim=2)

predicted_subword_labels = [lid_model.config.id2label[t.item()] for t in predictions[0]]
predicted_word_labels = [[] for _ in range(len(word_tokens))]

for idx, predicted_subword in enumerate(predicted_subword_labels):
    if subword2word[idx] is not None:
        predicted_word_labels[subword2word[idx]].append(predicted_subword)

def most_frequent(lst):
    return max(set(lst), key=lst.count) if lst else "Other"

predicted_word_labels = [most_frequent(sublist) for sublist in predicted_word_labels]

for token, label in zip(word_tokens, predicted_word_labels):
    print(f"{token}: {label}")

which returns

My: O
Facebook: I
,: O
Ig: I
&: O
Twitter: I
is: O
hellaa: O
dead: O
yall: O
Jk: O
soy: O
yo: O
que: O
has: O
no: O
life!: O

Word-level language labels

If you also want the language of each word, you can additionaly run AnE-LID. Checkout my evaluation scripts for examples of using both at the same time, as we did in the paper: https://github.com/igorsterner/AnE/tree/main/eval.

For the above example, you can get:

My: English
Facebook: NE.English
,: Other
Ig: NE.English
&: Other
Twitter: NE.English
is: English
hellaa: English
dead: English
yall: English
Jk: English
soy: notEnglish
yo: notEnglish
que: notEnglish
has: English
no: English
life: English
!: Other

Citation

Please consider citing my work if it helped you

@inproceedings{sterner-2024-multilingual,
    title = "Multilingual Identification of {E}nglish Code-Switching",
    author = "Sterner, Igor",
    editor = {Scherrer, Yves  and
      Jauhiainen, Tommi  and
      Ljube{\v{s}}i{\'c}, Nikola  and
      Zampieri, Marcos  and
      Nakov, Preslav  and
      Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Eleventh Workshop on NLP for Similar Languages, Varieties, and Dialects (VarDial 2024)",
    month = jun,
    year = "2024",
    address = "Mexico City, Mexico",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.vardial-1.14",
    doi = "10.18653/v1/2024.vardial-1.14",
    pages = "163--173",
    abstract = "Code-switching research depends on fine-grained language identification. In this work, we study existing corpora used to train token-level language identification systems. We aggregate these corpora with a consistent labelling scheme and train a system to identify English code-switching in multilingual text. We show that the system identifies code-switching in unseen language pairs with absolute measure 2.3-4.6{\%} better than language-pair-specific SoTA. We also analyse the correlation between typological similarity of the languages and difficulty in recognizing code-switching.",
}
Downloads last month
16
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for igorsterner/AnE-NER

Finetuned
(333)
this model