qa_kor_math
This model is a fine-tuned version of gogamza/kobart-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3294
Model description
νκ΅μ΄ μν λ¬Έμ λ₯Ό μ
λ ₯νλ©΄, λ¬Έμ μ νκ³Ό λ¬Έμ μ νμ λν μ€λͺ
, νμ΄(μ½λ), μ λ΅μ΄ μΆλ ₯λλλ‘ fine tuning νμ΅λλ€.
λ¬Έμ μ ν μ’
λ₯λ‘λ μ°μ μ°μ°, μμμ νκΈ°, μ‘°ν©νκΈ°, μ μ°ΎκΈ°, ν¬κΈ° λΉκ΅, λνμ΄ μμ΅λλ€.
μμ§ μμΈμ μ λͺ¨λ₯΄κ² μ§λ§, μ νλκ° λμ§λ μμ보μ
λλ€..
Intended uses & limitations
Training and evaluation data
TUNiB.aiμμ githubμ 곡κ°ν train λ°μ΄ν° μ
μΌλ‘ νμ΅νμμ΅λλ€.
Training procedure
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.56 | 100 | 3.5725 |
No log | 1.13 | 200 | 1.2367 |
No log | 1.69 | 300 | 0.7100 |
No log | 2.26 | 400 | 0.5420 |
2.4974 | 2.82 | 500 | 0.5891 |
2.4974 | 3.39 | 600 | 0.5370 |
2.4974 | 3.95 | 700 | 0.4738 |
2.4974 | 4.52 | 800 | 0.4985 |
2.4974 | 5.08 | 900 | 0.4540 |
0.3445 | 5.65 | 1000 | 0.4439 |
0.3445 | 6.21 | 1100 | 0.4261 |
0.3445 | 6.78 | 1200 | 0.4007 |
0.3445 | 7.34 | 1300 | 0.3739 |
0.3445 | 7.91 | 1400 | 0.3937 |
0.26 | 8.47 | 1500 | 0.3550 |
0.26 | 9.04 | 1600 | 0.3623 |
0.26 | 9.6 | 1700 | 0.3944 |
0.26 | 10.17 | 1800 | 0.3669 |
0.26 | 10.73 | 1900 | 0.3628 |
0.217 | 11.3 | 2000 | 0.3703 |
0.217 | 11.86 | 2100 | 0.3580 |
0.217 | 12.43 | 2200 | 0.3318 |
0.217 | 12.99 | 2300 | 0.3199 |
0.217 | 13.56 | 2400 | 0.3537 |
0.1916 | 14.12 | 2500 | 0.3198 |
0.1916 | 14.69 | 2600 | 0.3317 |
0.1916 | 15.25 | 2700 | 0.3333 |
0.1916 | 15.82 | 2800 | 0.3280 |
0.1916 | 16.38 | 2900 | 0.3269 |
0.1737 | 16.95 | 3000 | 0.3315 |
0.1737 | 17.51 | 3100 | 0.3346 |
0.1737 | 18.08 | 3200 | 0.3290 |
0.1737 | 18.64 | 3300 | 0.3317 |
0.1737 | 19.21 | 3400 | 0.3282 |
0.1637 | 19.77 | 3500 | 0.3294 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for idah4/qa_kor_math
Base model
gogamza/kobart-base-v2