iamtarun's picture
Create README.md
ea08385
|
raw
history blame
2.61 kB
metadata
datasets:
  - iamtarun/python_code_instructions_18k_alpaca
language:
  - en
metrics:
  - code_eval
library_name: transformers
pipeline_tag: text-generation
tags:
  - code
widget:
  - text: 'def isprime(num):'
    example_title: Code Example 1
  - text: 'def factorial(num):'
    example_title: Code Example 2
  - text: 'def square(num):'
    example_title: Code Example 3

Competitive Programming LLM for Python Language

This model is a finetuned version of codegen350M-mono on python code dataset that uses alpaca style prompts while training.

Prompt function

'''
This function generates prompts using the problem description and input.
@param1 instruction: str - text problem description
@param2 inputs: str - input to the program
'''
def generate_prompt(instruction, inputs=""):
    text = ("Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
            "### Instruction:\n"
            f"{instruction}\n\n"
            "### Input:\n"
            f"{inputs}\n\n"
            "### Output:\n")
    return text

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

# load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("iamtarun/codegen-350M-mono-4bit-qlora", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("iamtarun/codegen-350M-mono-4bit-qlora")

# loading model for inference
model.eval()

# inference function
'''
This function takes text prompt as input which is generated from the generate_prompt function and returns the generated response

@param1 prompt: str - text prompt generated using generate_prompt function.
'''
def pipe(prompt):
    device = "cuda"
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    with torch.no_grad():
        output = model.generate(**inputs, 
                                max_length=512,
                                do_sample=True,
                                temperature=0.5,
                                top_p=0.95,
                                repetition_penalty=1.15)
    return tokenizer.decode(output[0].tolist(), 
                            skip_special_tokens=True, 
                            clean_up_tokenization_space=False)

# generating code for a problem description
instruction = "Write a function to calculate square of a number in python"
inputs = "number = 5"
prompt = generate_prompt(instruction, inputs)
print(pipe(prompt))
print("\n", "="*100)