whisper-SER-base-v1 / README.md
iFaz's picture
End of training
171ad67 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - iFaz/Whisper_Compatible_SER_benchmark
metrics:
  - wer
model-index:
  - name: whisper-SER-base-v1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Whisper_Compatible_SER_benchmark(Not train_augmented)
          type: iFaz/Whisper_Compatible_SER_benchmark
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 105.45094152626362

whisper-SER-base-v1

This model is a fine-tuned version of openai/whisper-base on the Whisper_Compatible_SER_benchmark(Not train_augmented) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8757
  • Wer: 105.4509

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1761 2.4450 1000 0.5625 48.9594
0.0796 4.8900 2000 0.5905 87.2151
0.0201 7.3350 3000 0.7191 125.5203
0.0054 9.7800 4000 0.7985 127.7998
0.0012 12.2249 5000 0.8611 108.0278
0.0008 14.6699 6000 0.8757 105.4509

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0