i-be-snek/distilbert-base-uncased-finetuned-ner-exp_A
This model is a fine-tuned version of distilbert-base-uncased on the English subset of all named entities in Babelscape/multinerd dataset. It achieves the following results on the validation set:
- Train Loss: 0.0163
- Validation Loss: 0.1024
- Train Precision: 0.8763
- Train Recall: 0.8862
- Train F1: 0.8812
- Train Accuracy: 0.9750
- Epoch: 2
Model description
distilbert-base-uncased-finetuned-ner-exp_A is a Named Entity Recognition model finetuned on distilbert-base-uncased. This model is uncased, so it makes no distinction between "sarah" and "Sarah".
Training and evaluation data
This model has been evaluated on the English subset of the test set of Babelscape/multinerd
Evaluation results
metric | value |
---|---|
precision | 0.905358 |
recall | 0.930318 |
f1 | 0.917668 |
accuracy | 0.986355 |
metric/tag | ANIM | BIO | CEL | DIS | EVE | FOOD | INST | LOC | MEDIA | MYTH | ORG | PER | PLANT | TIME | VEHI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
precision | 0.667262 | 0.666667 | 0.508197 | 0.662324 | 0.896277 | 0.637809 | 0.642857 | 0.964137 | 0.931915 | 0.638889 | 0.941176 | 0.99033 | 0.558043 | 0.756579 | 0.735294 |
recall | 0.698878 | 0.75 | 0.756098 | 0.803689 | 0.957386 | 0.637809 | 0.75 | 0.963656 | 0.956332 | 0.71875 | 0.962224 | 0.992023 | 0.752796 | 0.795848 | 0.78125 |
f1 | 0.682704 | 0.705882 | 0.607843 | 0.72619 | 0.925824 | 0.637809 | 0.692308 | 0.963897 | 0.943966 | 0.676471 | 0.951584 | 0.991176 | 0.640952 | 0.775717 | 0.757576 |
number | 3208 | 16 | 82 | 1518 | 704 | 1132 | 24 | 24048 | 916 | 64 | 6618 | 10530 | 1788 | 578 | 64 |
Training procedure
All scripts for training can be found in this GitHub repository.
The model had early stopped watching its val_loss
.
Training hyperparameters
The following hyperparameters were used during training:
- optimizer:
{ "name": "AdamWeightDecay", "learning_rate": 2e-05, "decay": 0.0, "beta_1": 0.9, "beta_2": 0.999, "epsilon": 1e-07, "amsgrad": False, "weight_decay_rate": 0.0, }
- training_precision:
float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.0709 | 0.0710 | 0.8563 | 0.8875 | 0.8716 | 0.9735 | 0 |
0.0295 | 0.0851 | 0.8743 | 0.8835 | 0.8789 | 0.9748 | 1 |
0.0163 | 0.1024 | 0.8763 | 0.8862 | 0.8812 | 0.9750 | 2 |
Epoch 0
Named Entity | precision | recall | f1 |
---|---|---|---|
ANIM | 0.699150 | 0.620124 | 0.657270 |
BIO | 0.480000 | 0.782609 | 0.595041 |
CEL | 0.815385 | 0.876033 | 0.844622 |
DIS | 0.628939 | 0.806709 | 0.706818 |
EVE | 0.898876 | 0.924855 | 0.911681 |
FOOD | 0.624774 | 0.602266 | 0.613314 |
INST | 0.467391 | 0.741379 | 0.573333 |
LOC | 0.967354 | 0.969634 | 0.968493 |
MEDIA | 0.911227 | 0.939856 | 0.925320 |
MYTH | 0.941860 | 0.771429 | 0.848168 |
ORG | 0.924471 | 0.937629 | 0.931003 |
PER | 0.988699 | 0.990918 | 0.989807 |
PLANT | 0.622521 | 0.781333 | 0.692944 |
TIME | 0.743902 | 0.738499 | 0.741191 |
VEHI | 0.785714 | 0.791367 | 0.788530 |
Epoch 1
Named Entity | precision | recall | f1 |
---|---|---|---|
ANIM | 0.701040 | 0.747340 | 0.723450 |
BIO | 0.422222 | 0.826087 | 0.558824 |
CEL | 0.729167 | 0.867769 | 0.792453 |
DIS | 0.731099 | 0.749794 | 0.740328 |
EVE | 0.864865 | 0.924855 | 0.893855 |
FOOD | 0.652865 | 0.572632 | 0.610122 |
INST | 0.871795 | 0.586207 | 0.701031 |
LOC | 0.968255 | 0.966143 | 0.967198 |
MEDIA | 0.946346 | 0.918312 | 0.932118 |
MYTH | 0.914894 | 0.819048 | 0.864322 |
ORG | 0.906064 | 0.943582 | 0.924442 |
PER | 0.990389 | 0.988367 | 0.989377 |
PLANT | 0.625889 | 0.743556 | 0.679667 |
TIME | 0.755981 | 0.765133 | 0.760529 |
VEHI | 0.737500 | 0.848921 | 0.789298 |
Epoch 2
Named Entity | precision | recall | f1 |
---|---|---|---|
ANIM | 0.730443 | 0.687057 | 0.708086 |
BIO | 0.330882 | 0.978261 | 0.494505 |
CEL | 0.798561 | 0.917355 | 0.853846 |
DIS | 0.738108 | 0.750894 | 0.744446 |
EVE | 0.904899 | 0.907514 | 0.906205 |
FOOD | 0.628664 | 0.623184 | 0.625912 |
INST | 0.533333 | 0.551724 | 0.542373 |
LOC | 0.967915 | 0.973997 | 0.970946 |
MEDIA | 0.949627 | 0.913824 | 0.931382 |
MYTH | 0.910000 | 0.866667 | 0.887805 |
ORG | 0.924920 | 0.934136 | 0.929505 |
PER | 0.989506 | 0.991020 | 0.990263 |
PLANT | 0.637648 | 0.742222 | 0.685972 |
TIME | 0.766355 | 0.794189 | 0.780024 |
VEHI | 0.818182 | 0.647482 | 0.722892 |
Framework versions
- Transformers 4.35.2
- TensorFlow 2.14.0
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for i-be-snek/distilbert-base-uncased-finetuned-ner-exp_A
Base model
distilbert/distilbert-base-uncasedDataset used to train i-be-snek/distilbert-base-uncased-finetuned-ner-exp_A
Evaluation results
- precision on Babelscape/multinerdtest set self-reported0.905
- recall on Babelscape/multinerdtest set self-reported0.930
- f1 on Babelscape/multinerdtest set self-reported0.918
- accuracy on Babelscape/multinerdtest set self-reported0.986