whisper-small-hi / README.md
hyhaha's picture
End of training
7eb75bf verified
metadata
library_name: transformers
language:
  - hi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Hi - Sanchit Gandhi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 35.77837975112165

Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4049
  • Wer: 35.7784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2505 1.9417 200 0.3317 40.8406
0.0809 3.8835 400 0.3037 36.1339
0.0255 5.8252 600 0.3527 35.6683
0.0078 7.7670 800 0.3872 35.5202
0.004 9.7087 1000 0.4049 35.7784

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1