bert-15

This model is a fine-tuned version of deepset/bert-base-cased-squad2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 11.5138

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
11.3192 0.09 5 12.3266
11.4418 0.18 10 12.2766
11.029 0.27 15 12.2278
11.1589 0.36 20 12.1813
11.1385 0.45 25 12.1361
11.1645 0.55 30 12.0921
10.4417 0.64 35 12.0500
11.0789 0.73 40 12.0100
10.6311 0.82 45 11.9712
10.5261 0.91 50 11.9340
10.2874 1.0 55 11.8991
10.5003 1.09 60 11.8652
10.6206 1.18 65 11.8330
10.8413 1.27 70 11.8025
10.3731 1.36 75 11.7735
10.8143 1.45 80 11.7455
10.5414 1.55 85 11.7199
10.4919 1.64 90 11.6950
10.3187 1.73 95 11.6721
10.5598 1.82 100 11.6508
10.1028 1.91 105 11.6310
10.4634 2.0 110 11.6125
10.3986 2.09 115 11.5958
10.2164 2.18 120 11.5810
10.3932 2.27 125 11.5674
10.5229 2.36 130 11.5549
10.1181 2.45 135 11.5444
10.5176 2.55 140 11.5354
10.0784 2.64 145 11.5279
10.599 2.73 150 11.5223
10.3577 2.82 155 11.5180
10.3107 2.91 160 11.5150
10.5243 3.0 165 11.5138

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hung200504/bert-15

Finetuned
(28)
this model