huihui-ai's picture
Update README.md
d00922c verified
---
license: llama3.1
language:
- en
inference: false
fine-tuning: false
tags:
- nvidia
- llama3.1
datasets:
- nvidia/HelpSteer2
base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
pipeline_tag: text-generation
library_name: transformers
---
# huihui-ai/Llama-3.1-Nemotron-70B-Instruct-HF-abliterated
This is an uncensored version of [nvidia/Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it).
Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models.
## Use with ollama
You can use [huihui_ai/nemotron-abliterated](https://ollama.com/huihui_ai/nemotron-abliterated) directly,
```
ollama run huihui_ai/nemotron-abliterated
```
## Usage
You can use this model in your applications by loading it with Hugging Face's `transformers` library,
If the desired result is not achieved, you can clear the conversation and try again:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
model_name = "huihui-ai/Llama-3.1-Nemotron-70B-Instruct-HF-abliterated"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize conversation context
initial_messages = [
{"role": "system", "content": "You are a helpful assistant."}
]
messages = initial_messages.copy() # Copy the initial conversation context
# Enter conversation loop
while True:
# Get user input
user_input = input("User: ").strip() # Strip leading and trailing spaces
# If the user types '/exit', end the conversation
if user_input.lower() == "/exit":
print("Exiting chat.")
break
# If the user types '/clean', reset the conversation context
if user_input.lower() == "/clean":
messages = initial_messages.copy() # Reset conversation context
print("Chat history cleared. Starting a new conversation.")
continue
# If input is empty, prompt the user and continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
# Add user input to the conversation
messages.append({"role": "user", "content": user_input})
# Build the chat template
tokenized_message = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True
)
# Generate a response from the model
response_token_ids = model.generate(
tokenized_message['input_ids'].cuda(),
attention_mask=tokenized_message['attention_mask'].cuda(),
max_new_tokens=4096,
pad_token_id = tokenizer.eos_token_id
)
# Extract model output, removing special tokens
generated_tokens = response_token_ids[:, len(tokenized_message['input_ids'][0]):]
generated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
# Add the model's response to the conversation
messages.append({"role": "assistant", "content": generated_text})
# Print the model's response
print(f"Response: {generated_text}")
```