Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- lunar_model.zip +2 -2
- lunar_model/data +8 -8
- lunar_model/policy.optimizer.pth +1 -1
- lunar_model/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 276.82 +/- 15.15
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4abe1145e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4abe114670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4abe114700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4abe114790>", "_build": "<function ActorCriticPolicy._build at 0x7f4abe114820>", "forward": "<function ActorCriticPolicy.forward at 0x7f4abe1148b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4abe114940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4abe1149d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4abe114a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4abe114af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4abe114b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4abe10bea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670555902388646243, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKh8iL7ZfDc/0jQFvlNNwL60Tmu+7irZPQAAAAAAAAAApp11PiuWSz//qIs9xsS8vgY3DT6s8Ie9AAAAAAAAAACaKaI8XF8luuRztzfpVkcz5ZJ8Ozop1bYAAIA/AACAP5pJpzwUcKm66x5OOWIzNTTM9QC68yhsuAAAgD8AAIA/zURXu/nhCD7vCYy8pDOEvmvoHjs+8Su9AAAAAAAAAAAzM0W7uGb9uevn17YvRD4xX7arunSEADYAAIA/AACAP2qwlb7Cwj0/Jh42vixP9r616Km+umLMPQAAAAAAAAAAzb6vPfYEGrpY6FA4lQH0MvZs/rlgIXC3AACAPwAAgD+zGYw9j55rui5JhTf5lZsyyr5AuoV8nLYAAAAAAACAP5Atkr44Pfk+Hj2pPTQLg754eQO++myHPQAAAAAAAAAAM78wvCV7cT8Sisc8UXXGviUFO72HNIA9AAAAAAAAAAAaptS9RoC4PpsyTT6scFW+It6rPGAULD0AAAAAAAAAAM32vb1BcGs+o1BOPqpyUr5S1TU9x5CyuwAAAAAAAAAAGveqPXYSmT8aCto9dqHtvjAdTj3mRYo9AAAAAAAAAABmsqi8SP+6utlwLTM/ABSn6JsVuGtes7MAAIA/AACAP8CIGL66FJE/tThkvs86A78KTji+uBgxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkiQIV4AdcUCUhpRSlIwBbJRNRQGMAXSUR0CWETaJAMUidX2UKGgGaAloD0MISicSTLWkbUCUhpRSlGgVTSYBaBZHQJYSnI0ZWJd1fZQoaAZoCWgPQwjE7dCwGBNzQJSGlFKUaBVNGQFoFkdAlhNY2GZeA3V9lChoBmgJaA9DCJQXmYAfd3JAlIaUUpRoFU0kAWgWR0CWFLn2ZiNLdX2UKGgGaAloD0MIf6Zet4gBcECUhpRSlGgVTTwBaBZHQJYVPczqKP51fZQoaAZoCWgPQwjLv5ZXrqhyQJSGlFKUaBVNRQFoFkdAlhVkVvddmnV9lChoBmgJaA9DCABywoTRznJAlIaUUpRoFU0TAWgWR0CWF/L6UJOWdX2UKGgGaAloD0MI7C+7J08KcUCUhpRSlGgVTQgBaBZHQJYYNRQ79yd1fZQoaAZoCWgPQwitTWN7LTRwQJSGlFKUaBVNRQFoFkdAlhhUwnH/+HV9lChoBmgJaA9DCKSJd4BnVHFAlIaUUpRoFU0mAWgWR0CWGF5AyEcsdX2UKGgGaAloD0MIbOhmf6BjbkCUhpRSlGgVTR4BaBZHQJYYqluWKMx1fZQoaAZoCWgPQwj92Y8UEVRvQJSGlFKUaBVNLAFoFkdAlhjmtEG7jHV9lChoBmgJaA9DCD52Fyip6XBAlIaUUpRoFUv/aBZHQJYZb3pOerd1fZQoaAZoCWgPQwhNLsbA+nVwQJSGlFKUaBVNTgFoFkdAlhpjnRsuWnV9lChoBmgJaA9DCN8Xl6o0JXFAlIaUUpRoFU0QA2gWR0CWGoQ04zacdX2UKGgGaAloD0MIk1SmmAPBb0CUhpRSlGgVTRwBaBZHQJYasxagVXV1fZQoaAZoCWgPQwh96e3PBb9xQJSGlFKUaBVNMAFoFkdAlhttI5HVgHV9lChoBmgJaA9DCB8r+G2IU21AlIaUUpRoFU1AAWgWR0CWHSqR2bG4dX2UKGgGaAloD0MIN/sD5TZxb0CUhpRSlGgVS/toFkdAlh12LHdXT3V9lChoBmgJaA9DCKJD4EggynJAlIaUUpRoFU02AWgWR0CWHZCEHt4SdX2UKGgGaAloD0MIEZAvoQIdb0CUhpRSlGgVTRsBaBZHQJYd7RlYlpp1fZQoaAZoCWgPQwhjtmRVhLJwQJSGlFKUaBVNFwFoFkdAlh4qwY+B6XV9lChoBmgJaA9DCB3nNuEeEXBAlIaUUpRoFU0NAWgWR0CWIAm9g4OudX2UKGgGaAloD0MI3UWYohxtcECUhpRSlGgVTQgBaBZHQJYgEypJf6Z1fZQoaAZoCWgPQwj6QzNPrmNwQJSGlFKUaBVNKQFoFkdAliGi9ytFKHV9lChoBmgJaA9DCBWOIJViMm1AlIaUUpRoFU05AWgWR0CWId9Gqgh9dX2UKGgGaAloD0MIjJ3wEtxUckCUhpRSlGgVTSkBaBZHQJYicT37DVJ1fZQoaAZoCWgPQwii7gOQWoRtQJSGlFKUaBVNSgFoFkdAliLvY8Md93V9lChoBmgJaA9DCNP02QHXo3BAlIaUUpRoFU0vAWgWR0CWI8fNRm9QdX2UKGgGaAloD0MI8WJhiBzacUCUhpRSlGgVTYEBaBZHQJYkP93r2QJ1fZQoaAZoCWgPQwgtzEI7J+JuQJSGlFKUaBVNQgFoFkdAliSfaxoqTnV9lChoBmgJaA9DCCic3VqmiHJAlIaUUpRoFU1nAWgWR0CWJW2Q4jrzdX2UKGgGaAloD0MI8bxUbMwZQ0CUhpRSlGgVS+hoFkdAliWuCwr1/XV9lChoBmgJaA9DCAHBHD3+HXFAlIaUUpRoFU0HAWgWR0CWJfh8YyfudX2UKGgGaAloD0MIQpdw6C0PcECUhpRSlGgVTWIBaBZHQJYmeMDOkcl1fZQoaAZoCWgPQwiEYcCSa2VwQJSGlFKUaBVNJQFoFkdAliaytA9mpXV9lChoBmgJaA9DCETDYtT1VXJAlIaUUpRoFU0sAWgWR0CWJ0VoHs1LdX2UKGgGaAloD0MICfzh579GcUCUhpRSlGgVTRsBaBZHQJYow//vOQh1fZQoaAZoCWgPQwjvq3KhcgRuQJSGlFKUaBVNJQFoFkdAlikPQWvbGnV9lChoBmgJaA9DCOZ0WUxsBm5AlIaUUpRoFU2LAWgWR0CWKUW5paicdX2UKGgGaAloD0MIBtUGJyIgc0CUhpRSlGgVS/RoFkdAlioG5UcXFnV9lChoBmgJaA9DCARauoJt9kdAlIaUUpRoFUvNaBZHQJYqZ81Gb1B1fZQoaAZoCWgPQwhHdqVlpIlrQJSGlFKUaBVNMAFoFkdAliqaYNRWLnV9lChoBmgJaA9DCFjKMsRxdnBAlIaUUpRoFU0hAWgWR0CWKuhrFfiQdX2UKGgGaAloD0MIUd1c/O0zcECUhpRSlGgVTQ4BaBZHQJYriuloDgZ1fZQoaAZoCWgPQwhkPiDQWRlwQJSGlFKUaBVNHAFoFkdAlkAJtzjm0XV9lChoBmgJaA9DCP6Y1qYxxXBAlIaUUpRoFU1RAWgWR0CWQI0Yj0L/dX2UKGgGaAloD0MIBqBRunRXcECUhpRSlGgVTSYBaBZHQJZApu+AVfx1fZQoaAZoCWgPQwgRVI1ejSVwQJSGlFKUaBVNIAFoFkdAlkDLaIvalHV9lChoBmgJaA9DCArXo3C94XJAlIaUUpRoFU2qAWgWR0CWQQirT6SDdX2UKGgGaAloD0MI12fO+hTIb0CUhpRSlGgVTTMBaBZHQJZBzeBQN1B1fZQoaAZoCWgPQwi6L2e2q6lxQJSGlFKUaBVNNQFoFkdAlkIcrZrYXnV9lChoBmgJaA9DCHsS2JzDz3FAlIaUUpRoFU0xAWgWR0CWQqReTmnwdX2UKGgGaAloD0MIk/5eCg86R0CUhpRSlGgVS9NoFkdAlkLMkdFOPHV9lChoBmgJaA9DCNIA3gIJoWxAlIaUUpRoFU0DAWgWR0CWQt5fdAPedX2UKGgGaAloD0MI6dUApWEtckCUhpRSlGgVS99oFkdAlkN7jo6jnHV9lChoBmgJaA9DCEmD29pCiW9AlIaUUpRoFU0jAWgWR0CWQ/gqEvkBdX2UKGgGaAloD0MIQBU3bnFpcECUhpRSlGgVTTUBaBZHQJZEr0+TvAp1fZQoaAZoCWgPQwhIN8KioupwQJSGlFKUaBVNGQFoFkdAlkWSWE9MbnV9lChoBmgJaA9DCFt4Xiq2r3FAlIaUUpRoFU0YAWgWR0CWRjHCGetkdX2UKGgGaAloD0MI0ZUIVD9JcECUhpRSlGgVTVkBaBZHQJZHMsBhhH91fZQoaAZoCWgPQwiWk1D6QiNwQJSGlFKUaBVNCwFoFkdAlkhl2Rq46XV9lChoBmgJaA9DCOSeru6YZ3JAlIaUUpRoFU0iAWgWR0CWSRe3QUpNdX2UKGgGaAloD0MINPW6ReBBcUCUhpRSlGgVTR0BaBZHQJZJLYK6WgR1fZQoaAZoCWgPQwjtfhXgu5xyQJSGlFKUaBVNJQFoFkdAlkm+cx0uDnV9lChoBmgJaA9DCGyTisbaM3BAlIaUUpRoFU1JAWgWR0CWSedRiw0PdX2UKGgGaAloD0MIUp55OWxZcECUhpRSlGgVTTQBaBZHQJZLe3G4qgB1fZQoaAZoCWgPQwgwKqkTEH1yQJSGlFKUaBVNIgFoFkdAlkupvLowEnV9lChoBmgJaA9DCJFkVu/wwHJAlIaUUpRoFU0gAWgWR0CWTGq7iADrdX2UKGgGaAloD0MIdO0L6MWDcUCUhpRSlGgVTTkBaBZHQJZMe38XN1R1fZQoaAZoCWgPQwilg/V/zl1zQJSGlFKUaBVNQQFoFkdAlkyD1PFefXV9lChoBmgJaA9DCIOkT6vo03FAlIaUUpRoFU0MAWgWR0CWTSFN+LFXdX2UKGgGaAloD0MIW3o01ZOscECUhpRSlGgVTaQBaBZHQJZOr4DcM3J1fZQoaAZoCWgPQwh7avXV1WtyQJSGlFKUaBVNIgFoFkdAlk7Qhje9BnV9lChoBmgJaA9DCC3ovTEE5G1AlIaUUpRoFU1cAWgWR0CWTtp+c6NmdX2UKGgGaAloD0MINJ4I4rwocUCUhpRSlGgVTUwBaBZHQJZQuFlCkXV1fZQoaAZoCWgPQwg6svLLYPFsQJSGlFKUaBVNEQFoFkdAllG7rkbPyHV9lChoBmgJaA9DCIiDhChfGW9AlIaUUpRoFU0aAWgWR0CWUqXHR1HOdX2UKGgGaAloD0MIA3y3eePPbUCUhpRSlGgVTUMBaBZHQJZSuM3qAz51fZQoaAZoCWgPQwhXfEPhsxtOQJSGlFKUaBVL42gWR0CWUsneSB9UdX2UKGgGaAloD0MIU5YhjvU5bUCUhpRSlGgVTXsBaBZHQJZTSt8uzyB1fZQoaAZoCWgPQwjL94xE6LpuQJSGlFKUaBVNLgFoFkdAllNx/ZuhsnV9lChoBmgJaA9DCF1Std3EI3BAlIaUUpRoFU1RAWgWR0CWU9NHH3lCdX2UKGgGaAloD0MIWmWmtL7hcUCUhpRSlGgVTQsBaBZHQJZUyCoS+QF1fZQoaAZoCWgPQwh4Qq8/ibdvQJSGlFKUaBVNMQFoFkdAllUA/LTx5XV9lChoBmgJaA9DCAPN59xtA25AlIaUUpRoFU0pAWgWR0CWVa2/SH/MdX2UKGgGaAloD0MImDCale3sbkCUhpRSlGgVTTcBaBZHQJZWDbEgntx1fZQoaAZoCWgPQwj/7EeKyBxxQJSGlFKUaBVL9GgWR0CWVlalDWsjdX2UKGgGaAloD0MIh2u1h33FcUCUhpRSlGgVTTwBaBZHQJZW2AEt/Wl1fZQoaAZoCWgPQwjr/NtlvxxxQJSGlFKUaBVNIgFoFkdAlleXSOR1YHV9lChoBmgJaA9DCMhCdAhcjXFAlIaUUpRoFU0/AWgWR0CWWFTxXnyNdX2UKGgGaAloD0MI6q7sgkGzb0CUhpRSlGgVTR8BaBZHQJZZYZ9/jKh1fZQoaAZoCWgPQwjk2HqGcM1vQJSGlFKUaBVNKwFoFkdAllrPvWpZOnV9lChoBmgJaA9DCKRt/ImKanBAlIaUUpRoFU0XAWgWR0CWWzivPkaNdX2UKGgGaAloD0MIMJsAwzKpcUCUhpRSlGgVTRABaBZHQJZcILLIPsl1fZQoaAZoCWgPQwgFxCRcCAhyQJSGlFKUaBVNSQFoFkdAllzS8nNPg3V9lChoBmgJaA9DCINsWb4ux3FAlIaUUpRoFU1NAWgWR0CWXQmTkhicdX2UKGgGaAloD0MIkwILYMqzcUCUhpRSlGgVTTkBaBZHQJZdIofCAMF1fZQoaAZoCWgPQwicqKW5ldpvQJSGlFKUaBVNFwFoFkdAll18Djin53V9lChoBmgJaA9DCAg+BivOcG5AlIaUUpRoFU0RAWgWR0CWXYRQJokBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4abe1145e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4abe114670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4abe114700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4abe114790>", "_build": "<function ActorCriticPolicy._build at 0x7f4abe114820>", "forward": "<function ActorCriticPolicy.forward at 0x7f4abe1148b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4abe114940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4abe1149d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4abe114a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4abe114af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4abe114b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4abe10bea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670564902915847919, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABYmbw7nVk/uOvJPAJu5r7hoSC9iiMnPQAAAAAAAAAAmkplvjVkmj9kqbm+7f0Fv9bpvr6wiGy9AAAAAAAAAADmGCi9MbKnPV10BD5xBWS+SPjEPbIFirwAAAAAAAAAAEZmlT67OzI/9vmuvGwcD792/8w+u2FPvgAAAAAAAAAA85Kpvg9eRT/AZwI+ecvnvlyKsL6m6aI+AAAAAAAAAADWt1m+F0wfPyUZ/T1/UtW+qaAIvklNhT0AAAAAAAAAAMhzor6paGY/4uF3vOuhD7//uwC/TfP2PQAAAAAAAAAAM9dvPKnjID7nex++Zn2BvpbaXL3K1MA8AAAAAAAAAAAAPYq8LIKzPzZb3L3BIEG+MaSUvMCf470AAAAAAAAAAGZ70zxcezC6PWTxOtGZnDWmYZE61dIKugAAgD8AAAAAM80KPGiZhj3egYs7LaV7vmBkOr1qz3Y9AAAAAAAAAADaYi++NT3FPtSqmz4Au6u+ByG9PfPr1T0AAAAAAAAAAHrTZL7P6PI+qwqiPgMQwL6qcCq94BnPPQAAAAAAAAAAc7n2PXAjgz5OTBa+C52Evol3Pj06It29AAAAAAAAAAAalRK9j6QXvFJdljzlSpS8aiuAvAAX87sAAIA/AACAP3oriT7zrI0/grCZPoIaD7/dla8+W5BlPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZwqd11gDcUCUhpRSlIwBbJRL3IwBdJRHQMWWtTwc5sF1fZQoaAZoCWgPQwg+BFWjV1tUQJSGlFKUaBVLqGgWR0DFlrnRArxzdX2UKGgGaAloD0MILGFtjN03ckCUhpRSlGgVS/hoFkdAxZbmNBF/hHV9lChoBmgJaA9DCGMpkq/Ee3FAlIaUUpRoFU0fAWgWR0DFluY+Sr5qdX2UKGgGaAloD0MIDMhe776jckCUhpRSlGgVTRIBaBZHQMWW7RdY4hl1fZQoaAZoCWgPQwiBkgILYDtyQJSGlFKUaBVL+GgWR0DFlu4kPczqdX2UKGgGaAloD0MI7wG6L2esckCUhpRSlGgVTQ0BaBZHQMWXD8dxQzl1fZQoaAZoCWgPQwiZg6CjFV5xQJSGlFKUaBVL7GgWR0DFlyujZcs2dX2UKGgGaAloD0MIUmFsIQiacUCUhpRSlGgVS/NoFkdAxZcvqrR0EHV9lChoBmgJaA9DCBiyutUzs3BAlIaUUpRoFUv8aBZHQMWXQu8kD6p1fZQoaAZoCWgPQwh7vma5bKlxQJSGlFKUaBVNCgFoFkdAxZdD66asqHV9lChoBmgJaA9DCGH+Cpnr+nBAlIaUUpRoFUv2aBZHQMWXTbMotth1fZQoaAZoCWgPQwgfTIqPz5pzQJSGlFKUaBVNAQFoFkdAxZddsxfv4XV9lChoBmgJaA9DCHNH/8s1l29AlIaUUpRoFUvtaBZHQMWXduTaCcx1fZQoaAZoCWgPQwjwNm+cFEhxQJSGlFKUaBVL5WgWR0DFl4uiaiK0dX2UKGgGaAloD0MIuTMTDKc4c0CUhpRSlGgVS/FoFkdAxZeaAc1fmnV9lChoBmgJaA9DCCZw627ec3JAlIaUUpRoFU3IAWgWR0DFl68ibDuSdX2UKGgGaAloD0MIwlHy6lwLckCUhpRSlGgVS91oFkdAxZex5qM3qHV9lChoBmgJaA9DCGuA0lBjDnBAlIaUUpRoFUvsaBZHQMWXvhHbypd1fZQoaAZoCWgPQwjij6LOHKdyQJSGlFKUaBVL9mgWR0DFl8wTwlSkdX2UKGgGaAloD0MILa9cbxtXckCUhpRSlGgVS/1oFkdAxZfQ/yoXK3V9lChoBmgJaA9DCIj3HFjO9XFAlIaUUpRoFUvbaBZHQMWX1VTisGR1fZQoaAZoCWgPQwhod0gxwEduQJSGlFKUaBVL5GgWR0DFmAgIdELIdX2UKGgGaAloD0MIo3N+iuNkc0CUhpRSlGgVS+1oFkdAxZgPZ1V5r3V9lChoBmgJaA9DCLgjnBY8iHFAlIaUUpRoFU0FAWgWR0DFmBJ+rlvIdX2UKGgGaAloD0MILxUb8/rGckCUhpRSlGgVTSEBaBZHQMWYJndXT3J1fZQoaAZoCWgPQwg9EFmkyaZxQJSGlFKUaBVL/2gWR0DFmCgtthuwdX2UKGgGaAloD0MIIF7XL9g9cECUhpRSlGgVS/NoFkdAxZgsyeqaPXV9lChoBmgJaA9DCAt9sIyNJ3JAlIaUUpRoFUvdaBZHQMWYMURFqi51fZQoaAZoCWgPQwjFH0WdubpxQJSGlFKUaBVL1GgWR0DFmDwJC0F9dX2UKGgGaAloD0MIIAn7dhKzcECUhpRSlGgVS+5oFkdAxZmNKbrkbXV9lChoBmgJaA9DCAwfEVOiTnNAlIaUUpRoFUvgaBZHQMWZluqm0md1fZQoaAZoCWgPQwg/Gk6ZGxxzQJSGlFKUaBVNvwJoFkdAxZmdh/Aj6nV9lChoBmgJaA9DCHS1FfvLzm9AlIaUUpRoFUvvaBZHQMWZn/5ckdF1fZQoaAZoCWgPQwjPnsvUZE1zQJSGlFKUaBVL0GgWR0DFmaN2ovSMdX2UKGgGaAloD0MIp1mg3SFPcECUhpRSlGgVS/5oFkdAxZm2NpdrwnV9lChoBmgJaA9DCLDkKhb/hHJAlIaUUpRoFUvmaBZHQMWZtdpqREF1fZQoaAZoCWgPQwg7Gof6Xc1yQJSGlFKUaBVL5GgWR0DFmbehZha1dX2UKGgGaAloD0MIUn3nF2U2cUCUhpRSlGgVS9xoFkdAxZncsRQJonV9lChoBmgJaA9DCFsjgnHwmXNAlIaUUpRoFUvoaBZHQMWZ8TER8MN1fZQoaAZoCWgPQwhHBOPgkt1yQJSGlFKUaBVL0WgWR0DFmfy6Ymb9dX2UKGgGaAloD0MInMWLhSFVckCUhpRSlGgVS+RoFkdAxZoAjrRjSXV9lChoBmgJaA9DCKhxb36D9HBAlIaUUpRoFU0aAWgWR0DFmhV/6O5sdX2UKGgGaAloD0MIR8zs89gBcECUhpRSlGgVS/ZoFkdAxZoVU1AJLXV9lChoBmgJaA9DCBFSt7OvH3NAlIaUUpRoFUv5aBZHQMWaKfz8P4F1fZQoaAZoCWgPQwjt1FxusI5zQJSGlFKUaBVL22gWR0DFmjYHE/B4dX2UKGgGaAloD0MIjq89syRUckCUhpRSlGgVTTcBaBZHQMWaSr1VYIV1fZQoaAZoCWgPQwgBM9/BDyZxQJSGlFKUaBVL5GgWR0DFmlnrB0p3dX2UKGgGaAloD0MIP1JEhtWuckCUhpRSlGgVS/xoFkdAxZphL7oB73V9lChoBmgJaA9DCMB3mzfOK3FAlIaUUpRoFUv6aBZHQMWaaXAM2FZ1fZQoaAZoCWgPQwjuz0VDhnZzQJSGlFKUaBVL4GgWR0DFmm/0btJGdX2UKGgGaAloD0MIaM2Pv7QVbkCUhpRSlGgVS+VoFkdAxZpyVclgMXV9lChoBmgJaA9DCDC45o6+vHBAlIaUUpRoFUvwaBZHQMWaeQv6CUZ1fZQoaAZoCWgPQwj3PlWFholxQJSGlFKUaBVNLQFoFkdAxZqI2MsH0XV9lChoBmgJaA9DCA034PPDEXNAlIaUUpRoFUv+aBZHQMWaqa2WpqB1fZQoaAZoCWgPQwifILHdfQVxQJSGlFKUaBVL72gWR0DFmrBOJtSAdX2UKGgGaAloD0MIREyJJHp3cECUhpRSlGgVS/VoFkdAxZrE8SPEKnV9lChoBmgJaA9DCMlYbf7fdW5AlIaUUpRoFUv+aBZHQMWayFbFCLN1fZQoaAZoCWgPQwieQq7UMx9vQJSGlFKUaBVL32gWR0DFmsiBZpztdX2UKGgGaAloD0MI3nL1Y5MmcECUhpRSlGgVS9ZoFkdAxZrw/MW43HV9lChoBmgJaA9DCG/2B8otHXFAlIaUUpRoFU0dAWgWR0DFmvtyNn5BdX2UKGgGaAloD0MIfZI7bCKwcECUhpRSlGgVTQ0BaBZHQMWbAflZHNJ1fZQoaAZoCWgPQwgEPGnhckFyQJSGlFKUaBVNFQFoFkdAxZsSzyjHn3V9lChoBmgJaA9DCHU5JSBmaXBAlIaUUpRoFUvvaBZHQMWbEthmXgN1fZQoaAZoCWgPQwgG81fInFhzQJSGlFKUaBVL72gWR0DFmxjX6InCdX2UKGgGaAloD0MI6xnCMUtnb0CUhpRSlGgVS+doFkdAxZsa0kWyknV9lChoBmgJaA9DCAUZARUOnG5AlIaUUpRoFUvkaBZHQMWbHvVEuxt1fZQoaAZoCWgPQwgFpP0PsLFwQJSGlFKUaBVL5GgWR0DFmyDp/wy7dX2UKGgGaAloD0MIO4kI/2JWcUCUhpRSlGgVS+FoFkdAxZslMX7+DXV9lChoBmgJaA9DCGVVhJtMk3FAlIaUUpRoFUviaBZHQMWbNG+0w8J1fZQoaAZoCWgPQwiJm1PJANNzQJSGlFKUaBVL8GgWR0DFm10Ft8/mdX2UKGgGaAloD0MIQ8nk1I7hcECUhpRSlGgVS/JoFkdAxZtnM4cWCXV9lChoBmgJaA9DCPjgtUvbIXBAlIaUUpRoFUvVaBZHQMWbaCTdLxt1fZQoaAZoCWgPQwgZINEECkxwQJSGlFKUaBVL9GgWR0DFm30QkHD8dX2UKGgGaAloD0MI8Il1qrytcECUhpRSlGgVS/toFkdAxZuFNsWO63V9lChoBmgJaA9DCM77/zjhvW5AlIaUUpRoFUvXaBZHQMWboSQYDT11fZQoaAZoCWgPQwgykGeX76pxQJSGlFKUaBVL42gWR0DFm6SxHG0edX2UKGgGaAloD0MIvHg/bv8mcECUhpRSlGgVS9NoFkdAxZu0x8D0UXV9lChoBmgJaA9DCJZDi2ynnXFAlIaUUpRoFUveaBZHQMWbuCrT6SF1fZQoaAZoCWgPQwhW0opv6FVyQJSGlFKUaBVL0GgWR0DFm7kaqCHzdX2UKGgGaAloD0MIFy6rsBnuckCUhpRSlGgVS9loFkdAxZu7JPqLTHV9lChoBmgJaA9DCHk+A+qN2XFAlIaUUpRoFU0OAWgWR0DFm701wYLtdX2UKGgGaAloD0MIvalIhbEycUCUhpRSlGgVS9xoFkdAxZvH99c8knV9lChoBmgJaA9DCNUmTu53VW1AlIaUUpRoFUv1aBZHQMWb1AccU/R1fZQoaAZoCWgPQwj7B5EM+fhxQJSGlFKUaBVNGwFoFkdAxZvhb8FY+3V9lChoBmgJaA9DCFzHuOLi7XJAlIaUUpRoFUvvaBZHQMWcGQiqyW11fZQoaAZoCWgPQwizl22nLURwQJSGlFKUaBVNLAFoFkdAxZwbzxPO6nV9lChoBmgJaA9DCEuS5/o+MG9AlIaUUpRoFUvqaBZHQMWcHzbvgFZ1fZQoaAZoCWgPQwi2niEcc4JxQJSGlFKUaBVL2WgWR0DFnDERpUPydX2UKGgGaAloD0MI4iL3dHUhU0CUhpRSlGgVS51oFkdAxZw2xwAEMnV9lChoBmgJaA9DCBxAv+9fGnFAlIaUUpRoFU0UAWgWR0DFnEJSWJJodX2UKGgGaAloD0MIBHRfzmw1ckCUhpRSlGgVTQcBaBZHQMWcTuUD+zd1fZQoaAZoCWgPQwibVDTW/g1vQJSGlFKUaBVL0GgWR0DFnF0PtlZpdX2UKGgGaAloD0MI24r9ZXcFcECUhpRSlGgVS/poFkdAxZxnu6VdHHV9lChoBmgJaA9DCIsWoG11VHBAlIaUUpRoFUvmaBZHQMWcbw2l2vB1fZQoaAZoCWgPQwgZyol21cxzQJSGlFKUaBVL7GgWR0DFnG+vr4WUdX2UKGgGaAloD0MIutqK/eUIckCUhpRSlGgVS9loFkdAxZx130wrUnV9lChoBmgJaA9DCGvT2F4L8XFAlIaUUpRoFU0OAWgWR0DFnHmpOvdNdX2UKGgGaAloD0MIJJpAEUsPc0CUhpRSlGgVS9BoFkdAxZx7fLs8gnV9lChoBmgJaA9DCGd9yjEZxnNAlIaUUpRoFU0VAWgWR0DFnJGmYSg5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_model.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a185cc809f40170675911a3f0f02ca8bcd65ac0c139e8e2d8f49ff09618263f6
|
3 |
+
size 147115
|
lunar_model/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,23 +66,23 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1670564902915847919,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABYmbw7nVk/uOvJPAJu5r7hoSC9iiMnPQAAAAAAAAAAmkplvjVkmj9kqbm+7f0Fv9bpvr6wiGy9AAAAAAAAAADmGCi9MbKnPV10BD5xBWS+SPjEPbIFirwAAAAAAAAAAEZmlT67OzI/9vmuvGwcD792/8w+u2FPvgAAAAAAAAAA85Kpvg9eRT/AZwI+ecvnvlyKsL6m6aI+AAAAAAAAAADWt1m+F0wfPyUZ/T1/UtW+qaAIvklNhT0AAAAAAAAAAMhzor6paGY/4uF3vOuhD7//uwC/TfP2PQAAAAAAAAAAM9dvPKnjID7nex++Zn2BvpbaXL3K1MA8AAAAAAAAAAAAPYq8LIKzPzZb3L3BIEG+MaSUvMCf470AAAAAAAAAAGZ70zxcezC6PWTxOtGZnDWmYZE61dIKugAAgD8AAAAAM80KPGiZhj3egYs7LaV7vmBkOr1qz3Y9AAAAAAAAAADaYi++NT3FPtSqmz4Au6u+ByG9PfPr1T0AAAAAAAAAAHrTZL7P6PI+qwqiPgMQwL6qcCq94BnPPQAAAAAAAAAAc7n2PXAjgz5OTBa+C52Evol3Pj06It29AAAAAAAAAAAalRK9j6QXvFJdljzlSpS8aiuAvAAX87sAAIA/AACAP3oriT7zrI0/grCZPoIaD7/dla8+W5BlPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZwqd11gDcUCUhpRSlIwBbJRL3IwBdJRHQMWWtTwc5sF1fZQoaAZoCWgPQwg+BFWjV1tUQJSGlFKUaBVLqGgWR0DFlrnRArxzdX2UKGgGaAloD0MILGFtjN03ckCUhpRSlGgVS/hoFkdAxZbmNBF/hHV9lChoBmgJaA9DCGMpkq/Ee3FAlIaUUpRoFU0fAWgWR0DFluY+Sr5qdX2UKGgGaAloD0MIDMhe776jckCUhpRSlGgVTRIBaBZHQMWW7RdY4hl1fZQoaAZoCWgPQwiBkgILYDtyQJSGlFKUaBVL+GgWR0DFlu4kPczqdX2UKGgGaAloD0MI7wG6L2esckCUhpRSlGgVTQ0BaBZHQMWXD8dxQzl1fZQoaAZoCWgPQwiZg6CjFV5xQJSGlFKUaBVL7GgWR0DFlyujZcs2dX2UKGgGaAloD0MIUmFsIQiacUCUhpRSlGgVS/NoFkdAxZcvqrR0EHV9lChoBmgJaA9DCBiyutUzs3BAlIaUUpRoFUv8aBZHQMWXQu8kD6p1fZQoaAZoCWgPQwh7vma5bKlxQJSGlFKUaBVNCgFoFkdAxZdD66asqHV9lChoBmgJaA9DCGH+Cpnr+nBAlIaUUpRoFUv2aBZHQMWXTbMotth1fZQoaAZoCWgPQwgfTIqPz5pzQJSGlFKUaBVNAQFoFkdAxZddsxfv4XV9lChoBmgJaA9DCHNH/8s1l29AlIaUUpRoFUvtaBZHQMWXduTaCcx1fZQoaAZoCWgPQwjwNm+cFEhxQJSGlFKUaBVL5WgWR0DFl4uiaiK0dX2UKGgGaAloD0MIuTMTDKc4c0CUhpRSlGgVS/FoFkdAxZeaAc1fmnV9lChoBmgJaA9DCCZw627ec3JAlIaUUpRoFU3IAWgWR0DFl68ibDuSdX2UKGgGaAloD0MIwlHy6lwLckCUhpRSlGgVS91oFkdAxZex5qM3qHV9lChoBmgJaA9DCGuA0lBjDnBAlIaUUpRoFUvsaBZHQMWXvhHbypd1fZQoaAZoCWgPQwjij6LOHKdyQJSGlFKUaBVL9mgWR0DFl8wTwlSkdX2UKGgGaAloD0MILa9cbxtXckCUhpRSlGgVS/1oFkdAxZfQ/yoXK3V9lChoBmgJaA9DCIj3HFjO9XFAlIaUUpRoFUvbaBZHQMWX1VTisGR1fZQoaAZoCWgPQwhod0gxwEduQJSGlFKUaBVL5GgWR0DFmAgIdELIdX2UKGgGaAloD0MIo3N+iuNkc0CUhpRSlGgVS+1oFkdAxZgPZ1V5r3V9lChoBmgJaA9DCLgjnBY8iHFAlIaUUpRoFU0FAWgWR0DFmBJ+rlvIdX2UKGgGaAloD0MILxUb8/rGckCUhpRSlGgVTSEBaBZHQMWYJndXT3J1fZQoaAZoCWgPQwg9EFmkyaZxQJSGlFKUaBVL/2gWR0DFmCgtthuwdX2UKGgGaAloD0MIIF7XL9g9cECUhpRSlGgVS/NoFkdAxZgsyeqaPXV9lChoBmgJaA9DCAt9sIyNJ3JAlIaUUpRoFUvdaBZHQMWYMURFqi51fZQoaAZoCWgPQwjFH0WdubpxQJSGlFKUaBVL1GgWR0DFmDwJC0F9dX2UKGgGaAloD0MIIAn7dhKzcECUhpRSlGgVS+5oFkdAxZmNKbrkbXV9lChoBmgJaA9DCAwfEVOiTnNAlIaUUpRoFUvgaBZHQMWZluqm0md1fZQoaAZoCWgPQwg/Gk6ZGxxzQJSGlFKUaBVNvwJoFkdAxZmdh/Aj6nV9lChoBmgJaA9DCHS1FfvLzm9AlIaUUpRoFUvvaBZHQMWZn/5ckdF1fZQoaAZoCWgPQwjPnsvUZE1zQJSGlFKUaBVL0GgWR0DFmaN2ovSMdX2UKGgGaAloD0MIp1mg3SFPcECUhpRSlGgVS/5oFkdAxZm2NpdrwnV9lChoBmgJaA9DCLDkKhb/hHJAlIaUUpRoFUvmaBZHQMWZtdpqREF1fZQoaAZoCWgPQwg7Gof6Xc1yQJSGlFKUaBVL5GgWR0DFmbehZha1dX2UKGgGaAloD0MIUn3nF2U2cUCUhpRSlGgVS9xoFkdAxZncsRQJonV9lChoBmgJaA9DCFsjgnHwmXNAlIaUUpRoFUvoaBZHQMWZ8TER8MN1fZQoaAZoCWgPQwhHBOPgkt1yQJSGlFKUaBVL0WgWR0DFmfy6Ymb9dX2UKGgGaAloD0MInMWLhSFVckCUhpRSlGgVS+RoFkdAxZoAjrRjSXV9lChoBmgJaA9DCKhxb36D9HBAlIaUUpRoFU0aAWgWR0DFmhV/6O5sdX2UKGgGaAloD0MIR8zs89gBcECUhpRSlGgVS/ZoFkdAxZoVU1AJLXV9lChoBmgJaA9DCBFSt7OvH3NAlIaUUpRoFUv5aBZHQMWaKfz8P4F1fZQoaAZoCWgPQwjt1FxusI5zQJSGlFKUaBVL22gWR0DFmjYHE/B4dX2UKGgGaAloD0MIjq89syRUckCUhpRSlGgVTTcBaBZHQMWaSr1VYIV1fZQoaAZoCWgPQwgBM9/BDyZxQJSGlFKUaBVL5GgWR0DFmlnrB0p3dX2UKGgGaAloD0MIP1JEhtWuckCUhpRSlGgVS/xoFkdAxZphL7oB73V9lChoBmgJaA9DCMB3mzfOK3FAlIaUUpRoFUv6aBZHQMWaaXAM2FZ1fZQoaAZoCWgPQwjuz0VDhnZzQJSGlFKUaBVL4GgWR0DFmm/0btJGdX2UKGgGaAloD0MIaM2Pv7QVbkCUhpRSlGgVS+VoFkdAxZpyVclgMXV9lChoBmgJaA9DCDC45o6+vHBAlIaUUpRoFUvwaBZHQMWaeQv6CUZ1fZQoaAZoCWgPQwj3PlWFholxQJSGlFKUaBVNLQFoFkdAxZqI2MsH0XV9lChoBmgJaA9DCA034PPDEXNAlIaUUpRoFUv+aBZHQMWaqa2WpqB1fZQoaAZoCWgPQwifILHdfQVxQJSGlFKUaBVL72gWR0DFmrBOJtSAdX2UKGgGaAloD0MIREyJJHp3cECUhpRSlGgVS/VoFkdAxZrE8SPEKnV9lChoBmgJaA9DCMlYbf7fdW5AlIaUUpRoFUv+aBZHQMWayFbFCLN1fZQoaAZoCWgPQwieQq7UMx9vQJSGlFKUaBVL32gWR0DFmsiBZpztdX2UKGgGaAloD0MI3nL1Y5MmcECUhpRSlGgVS9ZoFkdAxZrw/MW43HV9lChoBmgJaA9DCG/2B8otHXFAlIaUUpRoFU0dAWgWR0DFmvtyNn5BdX2UKGgGaAloD0MIfZI7bCKwcECUhpRSlGgVTQ0BaBZHQMWbAflZHNJ1fZQoaAZoCWgPQwgEPGnhckFyQJSGlFKUaBVNFQFoFkdAxZsSzyjHn3V9lChoBmgJaA9DCHU5JSBmaXBAlIaUUpRoFUvvaBZHQMWbEthmXgN1fZQoaAZoCWgPQwgG81fInFhzQJSGlFKUaBVL72gWR0DFmxjX6InCdX2UKGgGaAloD0MI6xnCMUtnb0CUhpRSlGgVS+doFkdAxZsa0kWyknV9lChoBmgJaA9DCAUZARUOnG5AlIaUUpRoFUvkaBZHQMWbHvVEuxt1fZQoaAZoCWgPQwgFpP0PsLFwQJSGlFKUaBVL5GgWR0DFmyDp/wy7dX2UKGgGaAloD0MIO4kI/2JWcUCUhpRSlGgVS+FoFkdAxZslMX7+DXV9lChoBmgJaA9DCGVVhJtMk3FAlIaUUpRoFUviaBZHQMWbNG+0w8J1fZQoaAZoCWgPQwiJm1PJANNzQJSGlFKUaBVL8GgWR0DFm10Ft8/mdX2UKGgGaAloD0MIQ8nk1I7hcECUhpRSlGgVS/JoFkdAxZtnM4cWCXV9lChoBmgJaA9DCPjgtUvbIXBAlIaUUpRoFUvVaBZHQMWbaCTdLxt1fZQoaAZoCWgPQwgZINEECkxwQJSGlFKUaBVL9GgWR0DFm30QkHD8dX2UKGgGaAloD0MI8Il1qrytcECUhpRSlGgVS/toFkdAxZuFNsWO63V9lChoBmgJaA9DCM77/zjhvW5AlIaUUpRoFUvXaBZHQMWboSQYDT11fZQoaAZoCWgPQwgykGeX76pxQJSGlFKUaBVL42gWR0DFm6SxHG0edX2UKGgGaAloD0MIvHg/bv8mcECUhpRSlGgVS9NoFkdAxZu0x8D0UXV9lChoBmgJaA9DCJZDi2ynnXFAlIaUUpRoFUveaBZHQMWbuCrT6SF1fZQoaAZoCWgPQwhW0opv6FVyQJSGlFKUaBVL0GgWR0DFm7kaqCHzdX2UKGgGaAloD0MIFy6rsBnuckCUhpRSlGgVS9loFkdAxZu7JPqLTHV9lChoBmgJaA9DCHk+A+qN2XFAlIaUUpRoFU0OAWgWR0DFm701wYLtdX2UKGgGaAloD0MIvalIhbEycUCUhpRSlGgVS9xoFkdAxZvH99c8knV9lChoBmgJaA9DCNUmTu53VW1AlIaUUpRoFUv1aBZHQMWb1AccU/R1fZQoaAZoCWgPQwj7B5EM+fhxQJSGlFKUaBVNGwFoFkdAxZvhb8FY+3V9lChoBmgJaA9DCFzHuOLi7XJAlIaUUpRoFUvvaBZHQMWcGQiqyW11fZQoaAZoCWgPQwizl22nLURwQJSGlFKUaBVNLAFoFkdAxZwbzxPO6nV9lChoBmgJaA9DCEuS5/o+MG9AlIaUUpRoFUvqaBZHQMWcHzbvgFZ1fZQoaAZoCWgPQwi2niEcc4JxQJSGlFKUaBVL2WgWR0DFnDERpUPydX2UKGgGaAloD0MI4iL3dHUhU0CUhpRSlGgVS51oFkdAxZw2xwAEMnV9lChoBmgJaA9DCBxAv+9fGnFAlIaUUpRoFU0UAWgWR0DFnEJSWJJodX2UKGgGaAloD0MIBHRfzmw1ckCUhpRSlGgVTQcBaBZHQMWcTuUD+zd1fZQoaAZoCWgPQwibVDTW/g1vQJSGlFKUaBVL0GgWR0DFnF0PtlZpdX2UKGgGaAloD0MI24r9ZXcFcECUhpRSlGgVS/poFkdAxZxnu6VdHHV9lChoBmgJaA9DCIsWoG11VHBAlIaUUpRoFUvmaBZHQMWcbw2l2vB1fZQoaAZoCWgPQwgZyol21cxzQJSGlFKUaBVL7GgWR0DFnG+vr4WUdX2UKGgGaAloD0MIutqK/eUIckCUhpRSlGgVS9loFkdAxZx130wrUnV9lChoBmgJaA9DCGvT2F4L8XFAlIaUUpRoFU0OAWgWR0DFnHmpOvdNdX2UKGgGaAloD0MIJJpAEUsPc0CUhpRSlGgVS9BoFkdAxZx7fLs8gnV9lChoBmgJaA9DCGd9yjEZxnNAlIaUUpRoFU0VAWgWR0DFnJGmYSg5dWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 492,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
lunar_model/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd868c365783eb9cb282575c06d4b4765b6fd7fb0a70494c6830f5107b0c91f8
|
3 |
size 87929
|
lunar_model/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5def83d23c528cbbfcf4e8cdcdf886ae3765898fb17b4dc81d976b96b3c5200a
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 276.8179938978586, "std_reward": 15.147496038561753, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T06:19:38.519689"}
|