huam commited on
Commit
2fee62f
·
1 Parent(s): 8b576c1

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.02 +/- 19.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4abe1145e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4abe114670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4abe114700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4abe114790>", "_build": "<function ActorCriticPolicy._build at 0x7f4abe114820>", "forward": "<function ActorCriticPolicy.forward at 0x7f4abe1148b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4abe114940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4abe1149d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4abe114a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4abe114af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4abe114b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4abe10bea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670555902388646243, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKh8iL7ZfDc/0jQFvlNNwL60Tmu+7irZPQAAAAAAAAAApp11PiuWSz//qIs9xsS8vgY3DT6s8Ie9AAAAAAAAAACaKaI8XF8luuRztzfpVkcz5ZJ8Ozop1bYAAIA/AACAP5pJpzwUcKm66x5OOWIzNTTM9QC68yhsuAAAgD8AAIA/zURXu/nhCD7vCYy8pDOEvmvoHjs+8Su9AAAAAAAAAAAzM0W7uGb9uevn17YvRD4xX7arunSEADYAAIA/AACAP2qwlb7Cwj0/Jh42vixP9r616Km+umLMPQAAAAAAAAAAzb6vPfYEGrpY6FA4lQH0MvZs/rlgIXC3AACAPwAAgD+zGYw9j55rui5JhTf5lZsyyr5AuoV8nLYAAAAAAACAP5Atkr44Pfk+Hj2pPTQLg754eQO++myHPQAAAAAAAAAAM78wvCV7cT8Sisc8UXXGviUFO72HNIA9AAAAAAAAAAAaptS9RoC4PpsyTT6scFW+It6rPGAULD0AAAAAAAAAAM32vb1BcGs+o1BOPqpyUr5S1TU9x5CyuwAAAAAAAAAAGveqPXYSmT8aCto9dqHtvjAdTj3mRYo9AAAAAAAAAABmsqi8SP+6utlwLTM/ABSn6JsVuGtes7MAAIA/AACAP8CIGL66FJE/tThkvs86A78KTji+uBgxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkiQIV4AdcUCUhpRSlIwBbJRNRQGMAXSUR0CWETaJAMUidX2UKGgGaAloD0MISicSTLWkbUCUhpRSlGgVTSYBaBZHQJYSnI0ZWJd1fZQoaAZoCWgPQwjE7dCwGBNzQJSGlFKUaBVNGQFoFkdAlhNY2GZeA3V9lChoBmgJaA9DCJQXmYAfd3JAlIaUUpRoFU0kAWgWR0CWFLn2ZiNLdX2UKGgGaAloD0MIf6Zet4gBcECUhpRSlGgVTTwBaBZHQJYVPczqKP51fZQoaAZoCWgPQwjLv5ZXrqhyQJSGlFKUaBVNRQFoFkdAlhVkVvddmnV9lChoBmgJaA9DCABywoTRznJAlIaUUpRoFU0TAWgWR0CWF/L6UJOWdX2UKGgGaAloD0MI7C+7J08KcUCUhpRSlGgVTQgBaBZHQJYYNRQ79yd1fZQoaAZoCWgPQwitTWN7LTRwQJSGlFKUaBVNRQFoFkdAlhhUwnH/+HV9lChoBmgJaA9DCKSJd4BnVHFAlIaUUpRoFU0mAWgWR0CWGF5AyEcsdX2UKGgGaAloD0MIbOhmf6BjbkCUhpRSlGgVTR4BaBZHQJYYqluWKMx1fZQoaAZoCWgPQwj92Y8UEVRvQJSGlFKUaBVNLAFoFkdAlhjmtEG7jHV9lChoBmgJaA9DCD52Fyip6XBAlIaUUpRoFUv/aBZHQJYZb3pOerd1fZQoaAZoCWgPQwhNLsbA+nVwQJSGlFKUaBVNTgFoFkdAlhpjnRsuWnV9lChoBmgJaA9DCN8Xl6o0JXFAlIaUUpRoFU0QA2gWR0CWGoQ04zacdX2UKGgGaAloD0MIk1SmmAPBb0CUhpRSlGgVTRwBaBZHQJYasxagVXV1fZQoaAZoCWgPQwh96e3PBb9xQJSGlFKUaBVNMAFoFkdAlhttI5HVgHV9lChoBmgJaA9DCB8r+G2IU21AlIaUUpRoFU1AAWgWR0CWHSqR2bG4dX2UKGgGaAloD0MIN/sD5TZxb0CUhpRSlGgVS/toFkdAlh12LHdXT3V9lChoBmgJaA9DCKJD4EggynJAlIaUUpRoFU02AWgWR0CWHZCEHt4SdX2UKGgGaAloD0MIEZAvoQIdb0CUhpRSlGgVTRsBaBZHQJYd7RlYlpp1fZQoaAZoCWgPQwhjtmRVhLJwQJSGlFKUaBVNFwFoFkdAlh4qwY+B6XV9lChoBmgJaA9DCB3nNuEeEXBAlIaUUpRoFU0NAWgWR0CWIAm9g4OudX2UKGgGaAloD0MI3UWYohxtcECUhpRSlGgVTQgBaBZHQJYgEypJf6Z1fZQoaAZoCWgPQwj6QzNPrmNwQJSGlFKUaBVNKQFoFkdAliGi9ytFKHV9lChoBmgJaA9DCBWOIJViMm1AlIaUUpRoFU05AWgWR0CWId9Gqgh9dX2UKGgGaAloD0MIjJ3wEtxUckCUhpRSlGgVTSkBaBZHQJYicT37DVJ1fZQoaAZoCWgPQwii7gOQWoRtQJSGlFKUaBVNSgFoFkdAliLvY8Md93V9lChoBmgJaA9DCNP02QHXo3BAlIaUUpRoFU0vAWgWR0CWI8fNRm9QdX2UKGgGaAloD0MI8WJhiBzacUCUhpRSlGgVTYEBaBZHQJYkP93r2QJ1fZQoaAZoCWgPQwgtzEI7J+JuQJSGlFKUaBVNQgFoFkdAliSfaxoqTnV9lChoBmgJaA9DCCic3VqmiHJAlIaUUpRoFU1nAWgWR0CWJW2Q4jrzdX2UKGgGaAloD0MI8bxUbMwZQ0CUhpRSlGgVS+hoFkdAliWuCwr1/XV9lChoBmgJaA9DCAHBHD3+HXFAlIaUUpRoFU0HAWgWR0CWJfh8YyfudX2UKGgGaAloD0MIQpdw6C0PcECUhpRSlGgVTWIBaBZHQJYmeMDOkcl1fZQoaAZoCWgPQwiEYcCSa2VwQJSGlFKUaBVNJQFoFkdAliaytA9mpXV9lChoBmgJaA9DCETDYtT1VXJAlIaUUpRoFU0sAWgWR0CWJ0VoHs1LdX2UKGgGaAloD0MICfzh579GcUCUhpRSlGgVTRsBaBZHQJYow//vOQh1fZQoaAZoCWgPQwjvq3KhcgRuQJSGlFKUaBVNJQFoFkdAlikPQWvbGnV9lChoBmgJaA9DCOZ0WUxsBm5AlIaUUpRoFU2LAWgWR0CWKUW5paicdX2UKGgGaAloD0MIBtUGJyIgc0CUhpRSlGgVS/RoFkdAlioG5UcXFnV9lChoBmgJaA9DCARauoJt9kdAlIaUUpRoFUvNaBZHQJYqZ81Gb1B1fZQoaAZoCWgPQwhHdqVlpIlrQJSGlFKUaBVNMAFoFkdAliqaYNRWLnV9lChoBmgJaA9DCFjKMsRxdnBAlIaUUpRoFU0hAWgWR0CWKuhrFfiQdX2UKGgGaAloD0MIUd1c/O0zcECUhpRSlGgVTQ4BaBZHQJYriuloDgZ1fZQoaAZoCWgPQwhkPiDQWRlwQJSGlFKUaBVNHAFoFkdAlkAJtzjm0XV9lChoBmgJaA9DCP6Y1qYxxXBAlIaUUpRoFU1RAWgWR0CWQI0Yj0L/dX2UKGgGaAloD0MIBqBRunRXcECUhpRSlGgVTSYBaBZHQJZApu+AVfx1fZQoaAZoCWgPQwgRVI1ejSVwQJSGlFKUaBVNIAFoFkdAlkDLaIvalHV9lChoBmgJaA9DCArXo3C94XJAlIaUUpRoFU2qAWgWR0CWQQirT6SDdX2UKGgGaAloD0MI12fO+hTIb0CUhpRSlGgVTTMBaBZHQJZBzeBQN1B1fZQoaAZoCWgPQwi6L2e2q6lxQJSGlFKUaBVNNQFoFkdAlkIcrZrYXnV9lChoBmgJaA9DCHsS2JzDz3FAlIaUUpRoFU0xAWgWR0CWQqReTmnwdX2UKGgGaAloD0MIk/5eCg86R0CUhpRSlGgVS9NoFkdAlkLMkdFOPHV9lChoBmgJaA9DCNIA3gIJoWxAlIaUUpRoFU0DAWgWR0CWQt5fdAPedX2UKGgGaAloD0MI6dUApWEtckCUhpRSlGgVS99oFkdAlkN7jo6jnHV9lChoBmgJaA9DCEmD29pCiW9AlIaUUpRoFU0jAWgWR0CWQ/gqEvkBdX2UKGgGaAloD0MIQBU3bnFpcECUhpRSlGgVTTUBaBZHQJZEr0+TvAp1fZQoaAZoCWgPQwhIN8KioupwQJSGlFKUaBVNGQFoFkdAlkWSWE9MbnV9lChoBmgJaA9DCFt4Xiq2r3FAlIaUUpRoFU0YAWgWR0CWRjHCGetkdX2UKGgGaAloD0MI0ZUIVD9JcECUhpRSlGgVTVkBaBZHQJZHMsBhhH91fZQoaAZoCWgPQwiWk1D6QiNwQJSGlFKUaBVNCwFoFkdAlkhl2Rq46XV9lChoBmgJaA9DCOSeru6YZ3JAlIaUUpRoFU0iAWgWR0CWSRe3QUpNdX2UKGgGaAloD0MINPW6ReBBcUCUhpRSlGgVTR0BaBZHQJZJLYK6WgR1fZQoaAZoCWgPQwjtfhXgu5xyQJSGlFKUaBVNJQFoFkdAlkm+cx0uDnV9lChoBmgJaA9DCGyTisbaM3BAlIaUUpRoFU1JAWgWR0CWSedRiw0PdX2UKGgGaAloD0MIUp55OWxZcECUhpRSlGgVTTQBaBZHQJZLe3G4qgB1fZQoaAZoCWgPQwgwKqkTEH1yQJSGlFKUaBVNIgFoFkdAlkupvLowEnV9lChoBmgJaA9DCJFkVu/wwHJAlIaUUpRoFU0gAWgWR0CWTGq7iADrdX2UKGgGaAloD0MIdO0L6MWDcUCUhpRSlGgVTTkBaBZHQJZMe38XN1R1fZQoaAZoCWgPQwilg/V/zl1zQJSGlFKUaBVNQQFoFkdAlkyD1PFefXV9lChoBmgJaA9DCIOkT6vo03FAlIaUUpRoFU0MAWgWR0CWTSFN+LFXdX2UKGgGaAloD0MIW3o01ZOscECUhpRSlGgVTaQBaBZHQJZOr4DcM3J1fZQoaAZoCWgPQwh7avXV1WtyQJSGlFKUaBVNIgFoFkdAlk7Qhje9BnV9lChoBmgJaA9DCC3ovTEE5G1AlIaUUpRoFU1cAWgWR0CWTtp+c6NmdX2UKGgGaAloD0MINJ4I4rwocUCUhpRSlGgVTUwBaBZHQJZQuFlCkXV1fZQoaAZoCWgPQwg6svLLYPFsQJSGlFKUaBVNEQFoFkdAllG7rkbPyHV9lChoBmgJaA9DCIiDhChfGW9AlIaUUpRoFU0aAWgWR0CWUqXHR1HOdX2UKGgGaAloD0MIA3y3eePPbUCUhpRSlGgVTUMBaBZHQJZSuM3qAz51fZQoaAZoCWgPQwhXfEPhsxtOQJSGlFKUaBVL42gWR0CWUsneSB9UdX2UKGgGaAloD0MIU5YhjvU5bUCUhpRSlGgVTXsBaBZHQJZTSt8uzyB1fZQoaAZoCWgPQwjL94xE6LpuQJSGlFKUaBVNLgFoFkdAllNx/ZuhsnV9lChoBmgJaA9DCF1Std3EI3BAlIaUUpRoFU1RAWgWR0CWU9NHH3lCdX2UKGgGaAloD0MIWmWmtL7hcUCUhpRSlGgVTQsBaBZHQJZUyCoS+QF1fZQoaAZoCWgPQwh4Qq8/ibdvQJSGlFKUaBVNMQFoFkdAllUA/LTx5XV9lChoBmgJaA9DCAPN59xtA25AlIaUUpRoFU0pAWgWR0CWVa2/SH/MdX2UKGgGaAloD0MImDCale3sbkCUhpRSlGgVTTcBaBZHQJZWDbEgntx1fZQoaAZoCWgPQwj/7EeKyBxxQJSGlFKUaBVL9GgWR0CWVlalDWsjdX2UKGgGaAloD0MIh2u1h33FcUCUhpRSlGgVTTwBaBZHQJZW2AEt/Wl1fZQoaAZoCWgPQwjr/NtlvxxxQJSGlFKUaBVNIgFoFkdAlleXSOR1YHV9lChoBmgJaA9DCMhCdAhcjXFAlIaUUpRoFU0/AWgWR0CWWFTxXnyNdX2UKGgGaAloD0MI6q7sgkGzb0CUhpRSlGgVTR8BaBZHQJZZYZ9/jKh1fZQoaAZoCWgPQwjk2HqGcM1vQJSGlFKUaBVNKwFoFkdAllrPvWpZOnV9lChoBmgJaA9DCKRt/ImKanBAlIaUUpRoFU0XAWgWR0CWWzivPkaNdX2UKGgGaAloD0MIMJsAwzKpcUCUhpRSlGgVTRABaBZHQJZcILLIPsl1fZQoaAZoCWgPQwgFxCRcCAhyQJSGlFKUaBVNSQFoFkdAllzS8nNPg3V9lChoBmgJaA9DCINsWb4ux3FAlIaUUpRoFU1NAWgWR0CWXQmTkhicdX2UKGgGaAloD0MIkwILYMqzcUCUhpRSlGgVTTkBaBZHQJZdIofCAMF1fZQoaAZoCWgPQwicqKW5ldpvQJSGlFKUaBVNFwFoFkdAll18Djin53V9lChoBmgJaA9DCAg+BivOcG5AlIaUUpRoFU0RAWgWR0CWXYRQJokBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f76ee7c87e84c5fe6e484522ce24dfda14e688dc4829b23bf445592f9b3474f2
3
+ size 147206
lunar_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
lunar_model/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4abe1145e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4abe114670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4abe114700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4abe114790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4abe114820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4abe1148b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4abe114940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4abe1149d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4abe114a60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4abe114af0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4abe114b80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4abe10bea0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670555902388646243,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKh8iL7ZfDc/0jQFvlNNwL60Tmu+7irZPQAAAAAAAAAApp11PiuWSz//qIs9xsS8vgY3DT6s8Ie9AAAAAAAAAACaKaI8XF8luuRztzfpVkcz5ZJ8Ozop1bYAAIA/AACAP5pJpzwUcKm66x5OOWIzNTTM9QC68yhsuAAAgD8AAIA/zURXu/nhCD7vCYy8pDOEvmvoHjs+8Su9AAAAAAAAAAAzM0W7uGb9uevn17YvRD4xX7arunSEADYAAIA/AACAP2qwlb7Cwj0/Jh42vixP9r616Km+umLMPQAAAAAAAAAAzb6vPfYEGrpY6FA4lQH0MvZs/rlgIXC3AACAPwAAgD+zGYw9j55rui5JhTf5lZsyyr5AuoV8nLYAAAAAAACAP5Atkr44Pfk+Hj2pPTQLg754eQO++myHPQAAAAAAAAAAM78wvCV7cT8Sisc8UXXGviUFO72HNIA9AAAAAAAAAAAaptS9RoC4PpsyTT6scFW+It6rPGAULD0AAAAAAAAAAM32vb1BcGs+o1BOPqpyUr5S1TU9x5CyuwAAAAAAAAAAGveqPXYSmT8aCto9dqHtvjAdTj3mRYo9AAAAAAAAAABmsqi8SP+6utlwLTM/ABSn6JsVuGtes7MAAIA/AACAP8CIGL66FJE/tThkvs86A78KTji+uBgxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkiQIV4AdcUCUhpRSlIwBbJRNRQGMAXSUR0CWETaJAMUidX2UKGgGaAloD0MISicSTLWkbUCUhpRSlGgVTSYBaBZHQJYSnI0ZWJd1fZQoaAZoCWgPQwjE7dCwGBNzQJSGlFKUaBVNGQFoFkdAlhNY2GZeA3V9lChoBmgJaA9DCJQXmYAfd3JAlIaUUpRoFU0kAWgWR0CWFLn2ZiNLdX2UKGgGaAloD0MIf6Zet4gBcECUhpRSlGgVTTwBaBZHQJYVPczqKP51fZQoaAZoCWgPQwjLv5ZXrqhyQJSGlFKUaBVNRQFoFkdAlhVkVvddmnV9lChoBmgJaA9DCABywoTRznJAlIaUUpRoFU0TAWgWR0CWF/L6UJOWdX2UKGgGaAloD0MI7C+7J08KcUCUhpRSlGgVTQgBaBZHQJYYNRQ79yd1fZQoaAZoCWgPQwitTWN7LTRwQJSGlFKUaBVNRQFoFkdAlhhUwnH/+HV9lChoBmgJaA9DCKSJd4BnVHFAlIaUUpRoFU0mAWgWR0CWGF5AyEcsdX2UKGgGaAloD0MIbOhmf6BjbkCUhpRSlGgVTR4BaBZHQJYYqluWKMx1fZQoaAZoCWgPQwj92Y8UEVRvQJSGlFKUaBVNLAFoFkdAlhjmtEG7jHV9lChoBmgJaA9DCD52Fyip6XBAlIaUUpRoFUv/aBZHQJYZb3pOerd1fZQoaAZoCWgPQwhNLsbA+nVwQJSGlFKUaBVNTgFoFkdAlhpjnRsuWnV9lChoBmgJaA9DCN8Xl6o0JXFAlIaUUpRoFU0QA2gWR0CWGoQ04zacdX2UKGgGaAloD0MIk1SmmAPBb0CUhpRSlGgVTRwBaBZHQJYasxagVXV1fZQoaAZoCWgPQwh96e3PBb9xQJSGlFKUaBVNMAFoFkdAlhttI5HVgHV9lChoBmgJaA9DCB8r+G2IU21AlIaUUpRoFU1AAWgWR0CWHSqR2bG4dX2UKGgGaAloD0MIN/sD5TZxb0CUhpRSlGgVS/toFkdAlh12LHdXT3V9lChoBmgJaA9DCKJD4EggynJAlIaUUpRoFU02AWgWR0CWHZCEHt4SdX2UKGgGaAloD0MIEZAvoQIdb0CUhpRSlGgVTRsBaBZHQJYd7RlYlpp1fZQoaAZoCWgPQwhjtmRVhLJwQJSGlFKUaBVNFwFoFkdAlh4qwY+B6XV9lChoBmgJaA9DCB3nNuEeEXBAlIaUUpRoFU0NAWgWR0CWIAm9g4OudX2UKGgGaAloD0MI3UWYohxtcECUhpRSlGgVTQgBaBZHQJYgEypJf6Z1fZQoaAZoCWgPQwj6QzNPrmNwQJSGlFKUaBVNKQFoFkdAliGi9ytFKHV9lChoBmgJaA9DCBWOIJViMm1AlIaUUpRoFU05AWgWR0CWId9Gqgh9dX2UKGgGaAloD0MIjJ3wEtxUckCUhpRSlGgVTSkBaBZHQJYicT37DVJ1fZQoaAZoCWgPQwii7gOQWoRtQJSGlFKUaBVNSgFoFkdAliLvY8Md93V9lChoBmgJaA9DCNP02QHXo3BAlIaUUpRoFU0vAWgWR0CWI8fNRm9QdX2UKGgGaAloD0MI8WJhiBzacUCUhpRSlGgVTYEBaBZHQJYkP93r2QJ1fZQoaAZoCWgPQwgtzEI7J+JuQJSGlFKUaBVNQgFoFkdAliSfaxoqTnV9lChoBmgJaA9DCCic3VqmiHJAlIaUUpRoFU1nAWgWR0CWJW2Q4jrzdX2UKGgGaAloD0MI8bxUbMwZQ0CUhpRSlGgVS+hoFkdAliWuCwr1/XV9lChoBmgJaA9DCAHBHD3+HXFAlIaUUpRoFU0HAWgWR0CWJfh8YyfudX2UKGgGaAloD0MIQpdw6C0PcECUhpRSlGgVTWIBaBZHQJYmeMDOkcl1fZQoaAZoCWgPQwiEYcCSa2VwQJSGlFKUaBVNJQFoFkdAliaytA9mpXV9lChoBmgJaA9DCETDYtT1VXJAlIaUUpRoFU0sAWgWR0CWJ0VoHs1LdX2UKGgGaAloD0MICfzh579GcUCUhpRSlGgVTRsBaBZHQJYow//vOQh1fZQoaAZoCWgPQwjvq3KhcgRuQJSGlFKUaBVNJQFoFkdAlikPQWvbGnV9lChoBmgJaA9DCOZ0WUxsBm5AlIaUUpRoFU2LAWgWR0CWKUW5paicdX2UKGgGaAloD0MIBtUGJyIgc0CUhpRSlGgVS/RoFkdAlioG5UcXFnV9lChoBmgJaA9DCARauoJt9kdAlIaUUpRoFUvNaBZHQJYqZ81Gb1B1fZQoaAZoCWgPQwhHdqVlpIlrQJSGlFKUaBVNMAFoFkdAliqaYNRWLnV9lChoBmgJaA9DCFjKMsRxdnBAlIaUUpRoFU0hAWgWR0CWKuhrFfiQdX2UKGgGaAloD0MIUd1c/O0zcECUhpRSlGgVTQ4BaBZHQJYriuloDgZ1fZQoaAZoCWgPQwhkPiDQWRlwQJSGlFKUaBVNHAFoFkdAlkAJtzjm0XV9lChoBmgJaA9DCP6Y1qYxxXBAlIaUUpRoFU1RAWgWR0CWQI0Yj0L/dX2UKGgGaAloD0MIBqBRunRXcECUhpRSlGgVTSYBaBZHQJZApu+AVfx1fZQoaAZoCWgPQwgRVI1ejSVwQJSGlFKUaBVNIAFoFkdAlkDLaIvalHV9lChoBmgJaA9DCArXo3C94XJAlIaUUpRoFU2qAWgWR0CWQQirT6SDdX2UKGgGaAloD0MI12fO+hTIb0CUhpRSlGgVTTMBaBZHQJZBzeBQN1B1fZQoaAZoCWgPQwi6L2e2q6lxQJSGlFKUaBVNNQFoFkdAlkIcrZrYXnV9lChoBmgJaA9DCHsS2JzDz3FAlIaUUpRoFU0xAWgWR0CWQqReTmnwdX2UKGgGaAloD0MIk/5eCg86R0CUhpRSlGgVS9NoFkdAlkLMkdFOPHV9lChoBmgJaA9DCNIA3gIJoWxAlIaUUpRoFU0DAWgWR0CWQt5fdAPedX2UKGgGaAloD0MI6dUApWEtckCUhpRSlGgVS99oFkdAlkN7jo6jnHV9lChoBmgJaA9DCEmD29pCiW9AlIaUUpRoFU0jAWgWR0CWQ/gqEvkBdX2UKGgGaAloD0MIQBU3bnFpcECUhpRSlGgVTTUBaBZHQJZEr0+TvAp1fZQoaAZoCWgPQwhIN8KioupwQJSGlFKUaBVNGQFoFkdAlkWSWE9MbnV9lChoBmgJaA9DCFt4Xiq2r3FAlIaUUpRoFU0YAWgWR0CWRjHCGetkdX2UKGgGaAloD0MI0ZUIVD9JcECUhpRSlGgVTVkBaBZHQJZHMsBhhH91fZQoaAZoCWgPQwiWk1D6QiNwQJSGlFKUaBVNCwFoFkdAlkhl2Rq46XV9lChoBmgJaA9DCOSeru6YZ3JAlIaUUpRoFU0iAWgWR0CWSRe3QUpNdX2UKGgGaAloD0MINPW6ReBBcUCUhpRSlGgVTR0BaBZHQJZJLYK6WgR1fZQoaAZoCWgPQwjtfhXgu5xyQJSGlFKUaBVNJQFoFkdAlkm+cx0uDnV9lChoBmgJaA9DCGyTisbaM3BAlIaUUpRoFU1JAWgWR0CWSedRiw0PdX2UKGgGaAloD0MIUp55OWxZcECUhpRSlGgVTTQBaBZHQJZLe3G4qgB1fZQoaAZoCWgPQwgwKqkTEH1yQJSGlFKUaBVNIgFoFkdAlkupvLowEnV9lChoBmgJaA9DCJFkVu/wwHJAlIaUUpRoFU0gAWgWR0CWTGq7iADrdX2UKGgGaAloD0MIdO0L6MWDcUCUhpRSlGgVTTkBaBZHQJZMe38XN1R1fZQoaAZoCWgPQwilg/V/zl1zQJSGlFKUaBVNQQFoFkdAlkyD1PFefXV9lChoBmgJaA9DCIOkT6vo03FAlIaUUpRoFU0MAWgWR0CWTSFN+LFXdX2UKGgGaAloD0MIW3o01ZOscECUhpRSlGgVTaQBaBZHQJZOr4DcM3J1fZQoaAZoCWgPQwh7avXV1WtyQJSGlFKUaBVNIgFoFkdAlk7Qhje9BnV9lChoBmgJaA9DCC3ovTEE5G1AlIaUUpRoFU1cAWgWR0CWTtp+c6NmdX2UKGgGaAloD0MINJ4I4rwocUCUhpRSlGgVTUwBaBZHQJZQuFlCkXV1fZQoaAZoCWgPQwg6svLLYPFsQJSGlFKUaBVNEQFoFkdAllG7rkbPyHV9lChoBmgJaA9DCIiDhChfGW9AlIaUUpRoFU0aAWgWR0CWUqXHR1HOdX2UKGgGaAloD0MIA3y3eePPbUCUhpRSlGgVTUMBaBZHQJZSuM3qAz51fZQoaAZoCWgPQwhXfEPhsxtOQJSGlFKUaBVL42gWR0CWUsneSB9UdX2UKGgGaAloD0MIU5YhjvU5bUCUhpRSlGgVTXsBaBZHQJZTSt8uzyB1fZQoaAZoCWgPQwjL94xE6LpuQJSGlFKUaBVNLgFoFkdAllNx/ZuhsnV9lChoBmgJaA9DCF1Std3EI3BAlIaUUpRoFU1RAWgWR0CWU9NHH3lCdX2UKGgGaAloD0MIWmWmtL7hcUCUhpRSlGgVTQsBaBZHQJZUyCoS+QF1fZQoaAZoCWgPQwh4Qq8/ibdvQJSGlFKUaBVNMQFoFkdAllUA/LTx5XV9lChoBmgJaA9DCAPN59xtA25AlIaUUpRoFU0pAWgWR0CWVa2/SH/MdX2UKGgGaAloD0MImDCale3sbkCUhpRSlGgVTTcBaBZHQJZWDbEgntx1fZQoaAZoCWgPQwj/7EeKyBxxQJSGlFKUaBVL9GgWR0CWVlalDWsjdX2UKGgGaAloD0MIh2u1h33FcUCUhpRSlGgVTTwBaBZHQJZW2AEt/Wl1fZQoaAZoCWgPQwjr/NtlvxxxQJSGlFKUaBVNIgFoFkdAlleXSOR1YHV9lChoBmgJaA9DCMhCdAhcjXFAlIaUUpRoFU0/AWgWR0CWWFTxXnyNdX2UKGgGaAloD0MI6q7sgkGzb0CUhpRSlGgVTR8BaBZHQJZZYZ9/jKh1fZQoaAZoCWgPQwjk2HqGcM1vQJSGlFKUaBVNKwFoFkdAllrPvWpZOnV9lChoBmgJaA9DCKRt/ImKanBAlIaUUpRoFU0XAWgWR0CWWzivPkaNdX2UKGgGaAloD0MIMJsAwzKpcUCUhpRSlGgVTRABaBZHQJZcILLIPsl1fZQoaAZoCWgPQwgFxCRcCAhyQJSGlFKUaBVNSQFoFkdAllzS8nNPg3V9lChoBmgJaA9DCINsWb4ux3FAlIaUUpRoFU1NAWgWR0CWXQmTkhicdX2UKGgGaAloD0MIkwILYMqzcUCUhpRSlGgVTTkBaBZHQJZdIofCAMF1fZQoaAZoCWgPQwicqKW5ldpvQJSGlFKUaBVNFwFoFkdAll18Djin53V9lChoBmgJaA9DCAg+BivOcG5AlIaUUpRoFU0RAWgWR0CWXYRQJokBdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
lunar_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48a541e58d542718181810d48f54f3b7e7df0214fcacf8d06b97d9cb8053dd98
3
+ size 87929
lunar_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d5abe53c2678a720423017c3e4a657db759e4a558aafa19a56444ea983882ef
3
+ size 43201
lunar_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (199 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.01719514695196, "std_reward": 19.42489683678935, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T03:53:50.849753"}