howanching-clara's picture
Update README.md
97860ec verified
|
raw
history blame
4.71 kB
---
license: apache-2.0
base_model: sentence-transformers/all-MiniLM-L6-v2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: new_classifier_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Classifier for Academic Text Contents
This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on a collection of Linguistics publications.
It achieves the following results on the evaluation set:
- Loss: 0.4181
- Accuracy: 0.9193
## Model description
The model is fine-tuned with academic publications in Linguistics, to classify texts in publications into 4 classes as a filter to other tasks.
The 4 classes:
- 0: out of scope - materials that are of low significance, eg. page number and page header, noise from OCR/pdf-to-text convertion
- 1: main text - texts that are the main texts of the publication, to be used for down-stream tasks
- 2: examples - texts that are captions of the figures, or quotes or excerpts
- 3: references - references of the publication, excluding in-text citations
## Intended uses & limitations
Intended uses:
- to extract main text in academic texts for down-stream tasks
Limitations:
- training and evaluation data is limited to English, and academic texts in Linguistics
## How to run
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="howanching-clara/classifier_for_academic_texts", tokenizer="howanching-clara/classifier_for_academic_texts")
# Perform inference on your input text
your_text = "your text here."
result = classifier(your_text)
print(result)
```
## Try it yourself with the following examples (not in training/ evaluation data)
---
language: en
widget:
- text: "my example goes here in the requested language"
---
Excerpts from Chomsky, N. (2014). Aspects of the Theory of Syntax (No. 11). MIT press.
retrieved from https://apps.dtic.mil/sti/pdfs/AD0616323.pdf
- In the case of (ioii) and (1 lii), the passive transformation will
apply to the embedded sentence, and in all four cases other
operations will give the final surface forms of (8) and (g).
- (10) (i) Noun Phrase — Verb — Noun Phrase — Sentence
(/ — persuaded — a specialist — a specialist will examine
John)
(ii) Noun Phrase — Verb — Noun Phrase — Sentence
(/ — persuaded — John — a specialist will examine John)
- (13) S
Det
Predicate-Phrase
[+Definite] nom VP
their
F1...Fm Det N
destroy [+Definite] G, ... G,
the property
- 184 SOME RESIDUAL PROBLEMS
- Peshkovskii, A. M. (1956). Russkii Sintaksis v Nauchnom Osveshchenii.
Moscow.
## Problematic cases
Definitions or findings written in point form are challenging for the model. For example:
- (2) (i) the string (1) is a Sentence (S); frighten the boy is a Verb
Phrase (VP) consisting of the Verb (V) frighten and the
Noun Phrase (NP) the boy; sincerity is also an NP; the
NP the boy consists of the Determiner (Det) the, followed
by a Noun (N); the NP sincerity consists of just an N;
the is, furthermore, an Article (Art); may is a Verbal
Auxiliary (Aux) and, furthermore, a Modal (M).
- (v) specification of a function m such that m(i) is an integer
associated with the grammar G4 as its value (with, let us
say, lower value indicated by higher number)
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5772 | 1.0 | 762 | 0.3256 | 0.9062 |
| 0.2692 | 2.0 | 1524 | 0.3038 | 0.9163 |
| 0.217 | 3.0 | 2286 | 0.3109 | 0.9180 |
| 0.1773 | 4.0 | 3048 | 0.3160 | 0.9209 |
| 0.1619 | 5.0 | 3810 | 0.3440 | 0.9206 |
| 0.1329 | 6.0 | 4572 | 0.3675 | 0.9160 |
| 0.1165 | 7.0 | 5334 | 0.3770 | 0.9209 |
| 0.0943 | 8.0 | 6096 | 0.4012 | 0.9203 |
| 0.085 | 9.0 | 6858 | 0.4166 | 0.9196 |
| 0.0811 | 10.0 | 7620 | 0.4181 | 0.9193 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cpu
- Datasets 2.14.7
- Tokenizers 0.14.1