metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- model_eng
metrics:
- wer
model-index:
- name: VoiceMath-Tiny-Tres
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: model_eng
type: model_eng
config: default
split: None
args: default
metrics:
- name: Wer
type: wer
value: 10.023201856148493
VoiceMath-Tiny-Tres
This model is a fine-tuned version of openai/whisper-tiny.en on the model_eng dataset. It achieves the following results on the evaluation set:
- Loss: 0.6083
- Wer: 10.0232
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 1.0 | 100 | 0.4361 | 10.6729 |
No log | 2.0 | 200 | 0.4749 | 10.1160 |
No log | 3.0 | 300 | 0.4844 | 14.8956 |
No log | 4.0 | 400 | 0.5087 | 10.3944 |
0.1884 | 5.0 | 500 | 0.5732 | 9.7912 |
0.1884 | 6.0 | 600 | 0.5863 | 9.9768 |
0.1884 | 7.0 | 700 | 0.5934 | 9.9768 |
0.1884 | 8.0 | 800 | 0.6067 | 10.0232 |
0.1884 | 9.0 | 900 | 0.6051 | 10.1160 |
0.001 | 10.0 | 1000 | 0.6083 | 10.0232 |
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3