medmcqa-distil-bert-based-uncased

This model is a fine-tuned version of distilbert-base-uncased on a MedMCQA dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1025
  • Validation Loss: 4.4572
  • Train Accuracy: 0.275
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
1.3835 1.3719 0.35 0
1.3589 1.3579 0.325 1
1.2628 1.4648 0.328 2
1.0069 1.5701 0.304 3
0.6441 2.3132 0.287 4
0.3951 2.8174 0.281 5
0.2386 3.6746 0.299 6
0.1708 4.0410 0.287 7
0.1358 4.2157 0.288 8
0.1025 4.4572 0.275 9

Framework versions

  • Transformers 4.37.2
  • TensorFlow 2.15.0
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
4
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for hoangtran0308/medmcqa-distil-bert-based-uncased

Finetuned
(7249)
this model