metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_beit_base_sgd_0001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8036605657237936
smids_5x_beit_base_sgd_0001_fold2
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4724
- Accuracy: 0.8037
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0748 | 1.0 | 375 | 1.2296 | 0.3677 |
1.052 | 2.0 | 750 | 1.1460 | 0.3943 |
0.9644 | 3.0 | 1125 | 1.0650 | 0.4326 |
0.8415 | 4.0 | 1500 | 0.9877 | 0.4942 |
0.786 | 5.0 | 1875 | 0.9192 | 0.5557 |
0.7841 | 6.0 | 2250 | 0.8580 | 0.6323 |
0.7782 | 7.0 | 2625 | 0.8061 | 0.6689 |
0.7211 | 8.0 | 3000 | 0.7620 | 0.6889 |
0.6883 | 9.0 | 3375 | 0.7245 | 0.7138 |
0.6641 | 10.0 | 3750 | 0.6925 | 0.7371 |
0.6683 | 11.0 | 4125 | 0.6665 | 0.7404 |
0.7093 | 12.0 | 4500 | 0.6445 | 0.7454 |
0.5818 | 13.0 | 4875 | 0.6259 | 0.7604 |
0.5841 | 14.0 | 5250 | 0.6091 | 0.7604 |
0.5811 | 15.0 | 5625 | 0.5946 | 0.7637 |
0.5799 | 16.0 | 6000 | 0.5819 | 0.7704 |
0.5841 | 17.0 | 6375 | 0.5719 | 0.7720 |
0.5531 | 18.0 | 6750 | 0.5621 | 0.7770 |
0.5613 | 19.0 | 7125 | 0.5532 | 0.7820 |
0.5733 | 20.0 | 7500 | 0.5445 | 0.7837 |
0.538 | 21.0 | 7875 | 0.5380 | 0.7887 |
0.5305 | 22.0 | 8250 | 0.5326 | 0.7903 |
0.5558 | 23.0 | 8625 | 0.5259 | 0.7887 |
0.5149 | 24.0 | 9000 | 0.5202 | 0.7903 |
0.5317 | 25.0 | 9375 | 0.5157 | 0.7903 |
0.5391 | 26.0 | 9750 | 0.5118 | 0.7937 |
0.557 | 27.0 | 10125 | 0.5073 | 0.7920 |
0.4911 | 28.0 | 10500 | 0.5033 | 0.7970 |
0.4985 | 29.0 | 10875 | 0.5001 | 0.7937 |
0.5262 | 30.0 | 11250 | 0.4968 | 0.7937 |
0.4712 | 31.0 | 11625 | 0.4944 | 0.7970 |
0.5163 | 32.0 | 12000 | 0.4912 | 0.7953 |
0.4489 | 33.0 | 12375 | 0.4890 | 0.7987 |
0.4565 | 34.0 | 12750 | 0.4870 | 0.8003 |
0.484 | 35.0 | 13125 | 0.4849 | 0.7987 |
0.4879 | 36.0 | 13500 | 0.4832 | 0.8020 |
0.48 | 37.0 | 13875 | 0.4815 | 0.8053 |
0.4581 | 38.0 | 14250 | 0.4797 | 0.8053 |
0.4627 | 39.0 | 14625 | 0.4783 | 0.8070 |
0.475 | 40.0 | 15000 | 0.4772 | 0.8053 |
0.4851 | 41.0 | 15375 | 0.4762 | 0.8037 |
0.4434 | 42.0 | 15750 | 0.4753 | 0.8037 |
0.4381 | 43.0 | 16125 | 0.4746 | 0.8037 |
0.506 | 44.0 | 16500 | 0.4740 | 0.8037 |
0.4383 | 45.0 | 16875 | 0.4734 | 0.8037 |
0.4915 | 46.0 | 17250 | 0.4730 | 0.8037 |
0.4925 | 47.0 | 17625 | 0.4727 | 0.8037 |
0.4423 | 48.0 | 18000 | 0.4725 | 0.8037 |
0.4853 | 49.0 | 18375 | 0.4724 | 0.8037 |
0.5129 | 50.0 | 18750 | 0.4724 | 0.8037 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2