hkivancoral's picture
End of training
bc3cf9d
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_beit_base_sgd_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8036605657237936

smids_5x_beit_base_sgd_0001_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4724
  • Accuracy: 0.8037

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0748 1.0 375 1.2296 0.3677
1.052 2.0 750 1.1460 0.3943
0.9644 3.0 1125 1.0650 0.4326
0.8415 4.0 1500 0.9877 0.4942
0.786 5.0 1875 0.9192 0.5557
0.7841 6.0 2250 0.8580 0.6323
0.7782 7.0 2625 0.8061 0.6689
0.7211 8.0 3000 0.7620 0.6889
0.6883 9.0 3375 0.7245 0.7138
0.6641 10.0 3750 0.6925 0.7371
0.6683 11.0 4125 0.6665 0.7404
0.7093 12.0 4500 0.6445 0.7454
0.5818 13.0 4875 0.6259 0.7604
0.5841 14.0 5250 0.6091 0.7604
0.5811 15.0 5625 0.5946 0.7637
0.5799 16.0 6000 0.5819 0.7704
0.5841 17.0 6375 0.5719 0.7720
0.5531 18.0 6750 0.5621 0.7770
0.5613 19.0 7125 0.5532 0.7820
0.5733 20.0 7500 0.5445 0.7837
0.538 21.0 7875 0.5380 0.7887
0.5305 22.0 8250 0.5326 0.7903
0.5558 23.0 8625 0.5259 0.7887
0.5149 24.0 9000 0.5202 0.7903
0.5317 25.0 9375 0.5157 0.7903
0.5391 26.0 9750 0.5118 0.7937
0.557 27.0 10125 0.5073 0.7920
0.4911 28.0 10500 0.5033 0.7970
0.4985 29.0 10875 0.5001 0.7937
0.5262 30.0 11250 0.4968 0.7937
0.4712 31.0 11625 0.4944 0.7970
0.5163 32.0 12000 0.4912 0.7953
0.4489 33.0 12375 0.4890 0.7987
0.4565 34.0 12750 0.4870 0.8003
0.484 35.0 13125 0.4849 0.7987
0.4879 36.0 13500 0.4832 0.8020
0.48 37.0 13875 0.4815 0.8053
0.4581 38.0 14250 0.4797 0.8053
0.4627 39.0 14625 0.4783 0.8070
0.475 40.0 15000 0.4772 0.8053
0.4851 41.0 15375 0.4762 0.8037
0.4434 42.0 15750 0.4753 0.8037
0.4381 43.0 16125 0.4746 0.8037
0.506 44.0 16500 0.4740 0.8037
0.4383 45.0 16875 0.4734 0.8037
0.4915 46.0 17250 0.4730 0.8037
0.4925 47.0 17625 0.4727 0.8037
0.4423 48.0 18000 0.4725 0.8037
0.4853 49.0 18375 0.4724 0.8037
0.5129 50.0 18750 0.4724 0.8037

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2