metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_beit_base_rms_001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7983333333333333
smids_5x_beit_base_rms_001_fold4
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.7051
- Accuracy: 0.7983
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7798 | 1.0 | 375 | 0.7672 | 0.5633 |
0.803 | 2.0 | 750 | 0.7688 | 0.58 |
0.7686 | 3.0 | 1125 | 0.7514 | 0.61 |
0.7375 | 4.0 | 1500 | 0.8350 | 0.5517 |
0.7507 | 5.0 | 1875 | 0.8001 | 0.595 |
0.7083 | 6.0 | 2250 | 0.7244 | 0.65 |
0.708 | 7.0 | 2625 | 0.7289 | 0.6467 |
0.7266 | 8.0 | 3000 | 0.7325 | 0.6633 |
0.6418 | 9.0 | 3375 | 0.6940 | 0.6917 |
0.673 | 10.0 | 3750 | 0.7042 | 0.6617 |
0.6803 | 11.0 | 4125 | 0.6907 | 0.6817 |
0.64 | 12.0 | 4500 | 0.6890 | 0.675 |
0.6467 | 13.0 | 4875 | 0.7095 | 0.67 |
0.6428 | 14.0 | 5250 | 0.6543 | 0.7083 |
0.6389 | 15.0 | 5625 | 0.5890 | 0.7383 |
0.5885 | 16.0 | 6000 | 0.5874 | 0.7383 |
0.5689 | 17.0 | 6375 | 0.6828 | 0.705 |
0.5988 | 18.0 | 6750 | 0.6153 | 0.74 |
0.5869 | 19.0 | 7125 | 0.5556 | 0.745 |
0.5829 | 20.0 | 7500 | 0.5816 | 0.7417 |
0.5202 | 21.0 | 7875 | 0.6299 | 0.7267 |
0.4671 | 22.0 | 8250 | 0.5955 | 0.7383 |
0.4713 | 23.0 | 8625 | 0.5489 | 0.7783 |
0.4814 | 24.0 | 9000 | 0.6063 | 0.76 |
0.4578 | 25.0 | 9375 | 0.6548 | 0.7367 |
0.4226 | 26.0 | 9750 | 0.5459 | 0.75 |
0.349 | 27.0 | 10125 | 0.6223 | 0.76 |
0.3499 | 28.0 | 10500 | 0.5682 | 0.7817 |
0.2869 | 29.0 | 10875 | 0.7135 | 0.7717 |
0.3419 | 30.0 | 11250 | 0.6094 | 0.7833 |
0.3402 | 31.0 | 11625 | 0.6473 | 0.785 |
0.3025 | 32.0 | 12000 | 0.6500 | 0.7783 |
0.2278 | 33.0 | 12375 | 0.7439 | 0.7633 |
0.2211 | 34.0 | 12750 | 0.7227 | 0.775 |
0.1813 | 35.0 | 13125 | 0.7187 | 0.8033 |
0.1887 | 36.0 | 13500 | 0.7980 | 0.7883 |
0.2308 | 37.0 | 13875 | 0.8180 | 0.8 |
0.1362 | 38.0 | 14250 | 0.8499 | 0.7867 |
0.1204 | 39.0 | 14625 | 0.8914 | 0.8033 |
0.1182 | 40.0 | 15000 | 0.9026 | 0.7933 |
0.1271 | 41.0 | 15375 | 1.1021 | 0.775 |
0.0646 | 42.0 | 15750 | 1.1489 | 0.7967 |
0.0428 | 43.0 | 16125 | 1.2387 | 0.8067 |
0.0277 | 44.0 | 16500 | 1.2320 | 0.81 |
0.0276 | 45.0 | 16875 | 1.3879 | 0.79 |
0.0246 | 46.0 | 17250 | 1.4881 | 0.8033 |
0.0344 | 47.0 | 17625 | 1.5278 | 0.7983 |
0.006 | 48.0 | 18000 | 1.5757 | 0.8017 |
0.0048 | 49.0 | 18375 | 1.6617 | 0.8033 |
0.0042 | 50.0 | 18750 | 1.7051 | 0.7983 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2