hkivancoral's picture
End of training
1077a58
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_beit_base_rms_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7983333333333333

smids_5x_beit_base_rms_001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7051
  • Accuracy: 0.7983

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7798 1.0 375 0.7672 0.5633
0.803 2.0 750 0.7688 0.58
0.7686 3.0 1125 0.7514 0.61
0.7375 4.0 1500 0.8350 0.5517
0.7507 5.0 1875 0.8001 0.595
0.7083 6.0 2250 0.7244 0.65
0.708 7.0 2625 0.7289 0.6467
0.7266 8.0 3000 0.7325 0.6633
0.6418 9.0 3375 0.6940 0.6917
0.673 10.0 3750 0.7042 0.6617
0.6803 11.0 4125 0.6907 0.6817
0.64 12.0 4500 0.6890 0.675
0.6467 13.0 4875 0.7095 0.67
0.6428 14.0 5250 0.6543 0.7083
0.6389 15.0 5625 0.5890 0.7383
0.5885 16.0 6000 0.5874 0.7383
0.5689 17.0 6375 0.6828 0.705
0.5988 18.0 6750 0.6153 0.74
0.5869 19.0 7125 0.5556 0.745
0.5829 20.0 7500 0.5816 0.7417
0.5202 21.0 7875 0.6299 0.7267
0.4671 22.0 8250 0.5955 0.7383
0.4713 23.0 8625 0.5489 0.7783
0.4814 24.0 9000 0.6063 0.76
0.4578 25.0 9375 0.6548 0.7367
0.4226 26.0 9750 0.5459 0.75
0.349 27.0 10125 0.6223 0.76
0.3499 28.0 10500 0.5682 0.7817
0.2869 29.0 10875 0.7135 0.7717
0.3419 30.0 11250 0.6094 0.7833
0.3402 31.0 11625 0.6473 0.785
0.3025 32.0 12000 0.6500 0.7783
0.2278 33.0 12375 0.7439 0.7633
0.2211 34.0 12750 0.7227 0.775
0.1813 35.0 13125 0.7187 0.8033
0.1887 36.0 13500 0.7980 0.7883
0.2308 37.0 13875 0.8180 0.8
0.1362 38.0 14250 0.8499 0.7867
0.1204 39.0 14625 0.8914 0.8033
0.1182 40.0 15000 0.9026 0.7933
0.1271 41.0 15375 1.1021 0.775
0.0646 42.0 15750 1.1489 0.7967
0.0428 43.0 16125 1.2387 0.8067
0.0277 44.0 16500 1.2320 0.81
0.0276 45.0 16875 1.3879 0.79
0.0246 46.0 17250 1.4881 0.8033
0.0344 47.0 17625 1.5278 0.7983
0.006 48.0 18000 1.5757 0.8017
0.0048 49.0 18375 1.6617 0.8033
0.0042 50.0 18750 1.7051 0.7983

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2