metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_beit_base_rms_0001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.905
smids_5x_beit_base_rms_0001_fold5
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0211
- Accuracy: 0.905
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3069 | 1.0 | 375 | 0.3920 | 0.8783 |
0.2324 | 2.0 | 750 | 0.2994 | 0.8883 |
0.2111 | 3.0 | 1125 | 0.4025 | 0.8883 |
0.1469 | 4.0 | 1500 | 0.4730 | 0.8933 |
0.1348 | 5.0 | 1875 | 0.5021 | 0.8667 |
0.1083 | 6.0 | 2250 | 0.5547 | 0.875 |
0.074 | 7.0 | 2625 | 0.8070 | 0.865 |
0.0264 | 8.0 | 3000 | 0.6666 | 0.8817 |
0.0566 | 9.0 | 3375 | 0.5845 | 0.8817 |
0.0498 | 10.0 | 3750 | 0.6165 | 0.8717 |
0.0562 | 11.0 | 4125 | 0.6616 | 0.9017 |
0.0419 | 12.0 | 4500 | 0.5768 | 0.9 |
0.042 | 13.0 | 4875 | 0.6169 | 0.89 |
0.0428 | 14.0 | 5250 | 0.6006 | 0.8967 |
0.065 | 15.0 | 5625 | 0.6268 | 0.875 |
0.0169 | 16.0 | 6000 | 0.6699 | 0.9017 |
0.0201 | 17.0 | 6375 | 0.7528 | 0.8933 |
0.0241 | 18.0 | 6750 | 0.6629 | 0.89 |
0.0027 | 19.0 | 7125 | 0.6425 | 0.9017 |
0.0221 | 20.0 | 7500 | 0.6769 | 0.8917 |
0.0018 | 21.0 | 7875 | 0.8187 | 0.8867 |
0.0303 | 22.0 | 8250 | 0.6653 | 0.8933 |
0.0112 | 23.0 | 8625 | 0.7146 | 0.88 |
0.002 | 24.0 | 9000 | 0.7847 | 0.8983 |
0.0001 | 25.0 | 9375 | 0.7706 | 0.8933 |
0.001 | 26.0 | 9750 | 0.8815 | 0.8933 |
0.0089 | 27.0 | 10125 | 0.9055 | 0.8833 |
0.0011 | 28.0 | 10500 | 0.8721 | 0.8883 |
0.0031 | 29.0 | 10875 | 0.8475 | 0.8917 |
0.0096 | 30.0 | 11250 | 0.7033 | 0.9067 |
0.0084 | 31.0 | 11625 | 0.7845 | 0.9033 |
0.0003 | 32.0 | 12000 | 0.8241 | 0.8967 |
0.0002 | 33.0 | 12375 | 0.7939 | 0.905 |
0.0 | 34.0 | 12750 | 0.8492 | 0.9117 |
0.0039 | 35.0 | 13125 | 0.7919 | 0.905 |
0.0 | 36.0 | 13500 | 0.9132 | 0.9017 |
0.001 | 37.0 | 13875 | 0.9026 | 0.91 |
0.0073 | 38.0 | 14250 | 0.9238 | 0.9 |
0.0 | 39.0 | 14625 | 1.0700 | 0.895 |
0.0 | 40.0 | 15000 | 1.0185 | 0.9083 |
0.0 | 41.0 | 15375 | 1.0113 | 0.9 |
0.0 | 42.0 | 15750 | 0.9606 | 0.9033 |
0.0 | 43.0 | 16125 | 1.0356 | 0.9 |
0.0 | 44.0 | 16500 | 1.0382 | 0.9017 |
0.0 | 45.0 | 16875 | 1.0522 | 0.9 |
0.0 | 46.0 | 17250 | 1.0733 | 0.8967 |
0.0031 | 47.0 | 17625 | 1.0418 | 0.9017 |
0.0 | 48.0 | 18000 | 1.0244 | 0.9067 |
0.0 | 49.0 | 18375 | 1.0206 | 0.905 |
0.0019 | 50.0 | 18750 | 1.0211 | 0.905 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2