hkivancoral's picture
End of training
0d2dcff
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_beit_base_rms_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.905

smids_5x_beit_base_rms_0001_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0211
  • Accuracy: 0.905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3069 1.0 375 0.3920 0.8783
0.2324 2.0 750 0.2994 0.8883
0.2111 3.0 1125 0.4025 0.8883
0.1469 4.0 1500 0.4730 0.8933
0.1348 5.0 1875 0.5021 0.8667
0.1083 6.0 2250 0.5547 0.875
0.074 7.0 2625 0.8070 0.865
0.0264 8.0 3000 0.6666 0.8817
0.0566 9.0 3375 0.5845 0.8817
0.0498 10.0 3750 0.6165 0.8717
0.0562 11.0 4125 0.6616 0.9017
0.0419 12.0 4500 0.5768 0.9
0.042 13.0 4875 0.6169 0.89
0.0428 14.0 5250 0.6006 0.8967
0.065 15.0 5625 0.6268 0.875
0.0169 16.0 6000 0.6699 0.9017
0.0201 17.0 6375 0.7528 0.8933
0.0241 18.0 6750 0.6629 0.89
0.0027 19.0 7125 0.6425 0.9017
0.0221 20.0 7500 0.6769 0.8917
0.0018 21.0 7875 0.8187 0.8867
0.0303 22.0 8250 0.6653 0.8933
0.0112 23.0 8625 0.7146 0.88
0.002 24.0 9000 0.7847 0.8983
0.0001 25.0 9375 0.7706 0.8933
0.001 26.0 9750 0.8815 0.8933
0.0089 27.0 10125 0.9055 0.8833
0.0011 28.0 10500 0.8721 0.8883
0.0031 29.0 10875 0.8475 0.8917
0.0096 30.0 11250 0.7033 0.9067
0.0084 31.0 11625 0.7845 0.9033
0.0003 32.0 12000 0.8241 0.8967
0.0002 33.0 12375 0.7939 0.905
0.0 34.0 12750 0.8492 0.9117
0.0039 35.0 13125 0.7919 0.905
0.0 36.0 13500 0.9132 0.9017
0.001 37.0 13875 0.9026 0.91
0.0073 38.0 14250 0.9238 0.9
0.0 39.0 14625 1.0700 0.895
0.0 40.0 15000 1.0185 0.9083
0.0 41.0 15375 1.0113 0.9
0.0 42.0 15750 0.9606 0.9033
0.0 43.0 16125 1.0356 0.9
0.0 44.0 16500 1.0382 0.9017
0.0 45.0 16875 1.0522 0.9
0.0 46.0 17250 1.0733 0.8967
0.0031 47.0 17625 1.0418 0.9017
0.0 48.0 18000 1.0244 0.9067
0.0 49.0 18375 1.0206 0.905
0.0019 50.0 18750 1.0211 0.905

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2