metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_beit_base_rms_0001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.855
smids_5x_beit_base_rms_0001_fold3
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3488
- Accuracy: 0.855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5467 | 1.0 | 375 | 0.5969 | 0.7483 |
0.4112 | 2.0 | 750 | 0.6522 | 0.7967 |
0.3586 | 3.0 | 1125 | 0.4558 | 0.83 |
0.3318 | 4.0 | 1500 | 0.3669 | 0.8567 |
0.318 | 5.0 | 1875 | 0.4227 | 0.8267 |
0.2611 | 6.0 | 2250 | 0.4142 | 0.8467 |
0.2866 | 7.0 | 2625 | 0.4534 | 0.83 |
0.2297 | 8.0 | 3000 | 0.4296 | 0.8517 |
0.1623 | 9.0 | 3375 | 0.5359 | 0.835 |
0.1313 | 10.0 | 3750 | 0.5677 | 0.8433 |
0.1856 | 11.0 | 4125 | 0.5198 | 0.8667 |
0.087 | 12.0 | 4500 | 0.6463 | 0.8417 |
0.0974 | 13.0 | 4875 | 0.5874 | 0.8417 |
0.0478 | 14.0 | 5250 | 0.7058 | 0.84 |
0.0326 | 15.0 | 5625 | 0.7427 | 0.8283 |
0.0198 | 16.0 | 6000 | 0.8945 | 0.84 |
0.0746 | 17.0 | 6375 | 0.8489 | 0.8333 |
0.1024 | 18.0 | 6750 | 0.7564 | 0.8383 |
0.0499 | 19.0 | 7125 | 0.8028 | 0.8483 |
0.0808 | 20.0 | 7500 | 1.0400 | 0.8267 |
0.0495 | 21.0 | 7875 | 1.0596 | 0.83 |
0.0441 | 22.0 | 8250 | 0.9512 | 0.85 |
0.0385 | 23.0 | 8625 | 0.8380 | 0.8483 |
0.0162 | 24.0 | 9000 | 1.0671 | 0.8517 |
0.0061 | 25.0 | 9375 | 0.8747 | 0.86 |
0.0284 | 26.0 | 9750 | 1.0398 | 0.815 |
0.0446 | 27.0 | 10125 | 0.9748 | 0.845 |
0.0208 | 28.0 | 10500 | 1.0700 | 0.8517 |
0.0357 | 29.0 | 10875 | 1.0579 | 0.845 |
0.0301 | 30.0 | 11250 | 0.9043 | 0.8583 |
0.0099 | 31.0 | 11625 | 0.9420 | 0.8533 |
0.0327 | 32.0 | 12000 | 1.0192 | 0.8467 |
0.0502 | 33.0 | 12375 | 0.8952 | 0.8517 |
0.0352 | 34.0 | 12750 | 0.9041 | 0.8667 |
0.0188 | 35.0 | 13125 | 1.2059 | 0.8433 |
0.0229 | 36.0 | 13500 | 1.2761 | 0.84 |
0.0123 | 37.0 | 13875 | 1.1077 | 0.8583 |
0.0002 | 38.0 | 14250 | 1.1468 | 0.85 |
0.0009 | 39.0 | 14625 | 1.1590 | 0.8617 |
0.0211 | 40.0 | 15000 | 1.3901 | 0.8683 |
0.001 | 41.0 | 15375 | 1.2933 | 0.8533 |
0.0077 | 42.0 | 15750 | 1.1576 | 0.8583 |
0.0369 | 43.0 | 16125 | 1.3070 | 0.8433 |
0.0132 | 44.0 | 16500 | 1.0120 | 0.8633 |
0.0003 | 45.0 | 16875 | 1.2641 | 0.8633 |
0.0001 | 46.0 | 17250 | 1.2268 | 0.8633 |
0.0004 | 47.0 | 17625 | 1.1854 | 0.8583 |
0.0001 | 48.0 | 18000 | 1.3326 | 0.865 |
0.0187 | 49.0 | 18375 | 1.3505 | 0.8567 |
0.0011 | 50.0 | 18750 | 1.3488 | 0.855 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2